CHAPTER 6 – POPULATION AND LAND USE FORECAST

6.1 Introduction

An in depth population and land use forecast for the island of Guam was completed to provide relevant input to other portions of the WRMP, including data for developing the water, wastewater, and costing models.

The focus of this chapter is on three major elements: (1) task approach, (2) relationship to Guam's existing land use plans, and (3) key assumptions.

6.1.1 Approach

The approach to attaining population and land use projections for Guam required systematic study and analysis of existing conditions, probable future conditions, and potential scenarios of future population distribution. The methodology involved:

- Use of official U.S. Census Bureau population projections, as they provided the most reasonable forecast, based on historic trends analysis;
- Analysis of existing land use, zoning data, and proposed projects to help discern future land use development patterns; and
- Preparation of an allocation model using the aforementioned elements to estimate future population distribution.

The following data and analyses served as the basis for the population and land use projections:

- Official U.S. Census Total Population Projections Provides a reasonable forecast based on historic population growth trends prepared and recognized by the federal government.
- Existing Economic and Land Use Conditions Provides an overview of the current economy, existing land uses, and zoning.
 - Economy Provides a general discussion of the local economy.
 - Existing Land Uses Documents existing land uses and zoning information.
- Anticipated Future Economic and Land Use Conditions Outlines a future scenario for Guam, based on a breakdown of planning factors that affect future land uses.
 - Economy Projects future economic and population characteristics.
 - Transportation Analysis Zones Entails the use of traffic projections to estimate population distribution in urban areas.
 - Development Proposals Includes development proposals from the public, private, and military sectors to estimate future growth.
 - Aquifer Protection and Government Land Lease Program Assumes future low-density development in much of northern Guam due to

aquifer-sensitive areas and long-term (99 years) government land leases to residents of Chamorro ancestry.

Future Population Distribution – Incorporates selected U.S. Census official population projections and local planning factors that affect how land may be used. An allocation model is used to adjust and distribute future population in census block groups. Population distribution for Years 2005 to 2020 is based on known potential development projects and possible development time-frame scenarios. For Years 2050 and 2100, growth rates are assumed to be consistent with historic population growth trends, but development projects that far in the future are unknown.

6.1.2 Relationship to Existing Land Use Master Plans

Though it contained useful historic data, the planning information in the 1967 Territory of Guam Master Plan was outdated. At best, it set the stage for policy and decision-making pertaining to land use on Guam. Of particular significance was the creation of the Territorial Land Use Commission (TLUC) and its regulatory mandates. The report indicates that its land use projections were intended to accommodate a population of 108,400 by 1985. Efforts to update the 1967 plan include the 1978 Guam Comprehensive Development Plan and the 1997 Y Tano Ta Land Use Plan, which was adopted by law but subsequently repealed.

The population and land use forecast effort covered in this chapter does not attempt to create a comprehensive island-wide land use master plan, nor does it include an island-wide public opinion survey of desirable community development scenarios. Rather, it concentrates on planning factors necessary to meet short-term and long-term water demand and wastewater disposal requirements in support of GWA's WRMP. Consequently, the planning tools used in this chapter focus on the following: (1) development patterns based on existing land use information and zoning designations; (2) transportation analysis zone information; (3) proposed developments; and, (4) aquifer protection and long-term lease of government lands.

It should be noted that the lack of an updated land use master plan places constraints on developing a unified and consistent growth management scenario.

6.1.3 Key Assumptions

Key assumptions of this report included the following:

- Tourism and military activities will continue to be the major economic drivers on Guam well into the future. This assumption is based on decades of historical experience related to Guam's strategic location for defense purposes and on its tropical island appeal to vacationers from Asian countries.
- Guam's political alliance with the United States will continue and will not differ radically from its current status as an Unincorporated Territory (with the continuation of U.S. immigration control).
- The land use forecast was based on existing land use patterns, available zoning data, and future development project proposals from the private, public, and military sectors. It is assumed that these factors will help determine future land use activities.

 The land use forecast assumes that, for the most part, the island's water supply (both aquifer and surface water systems) will remain adequate in terms of quantity and quality for the forecast period.

6.2 Existing Conditions

Existing population, and land use conditions on Guam are discussed in this section.

6.2.1 Population

As stated above, Guam's economic growth relies on tourism and military activities, and these industries will remain the prime economic forces well into the future. Immediately after World War II, the population increased significantly – from 22,290 in 1940 to 59,498 in 1950, a 167 percent increase. Since the 1960s, civilian and military population has experienced an average growth rate of 22 percent at the end of each decade (Table 6-1).

Economic activity in hotel and resort development was prevalent during the late 1980s and early 1990s while military construction activities were ongoing. More recently, population growth and economic activity appear to have slowed down, owing to such factors as the 9/11 attacks in 2001, Typhoon Pongsona in December 2002, the outbreak of SARS disease in 2003, the Asian financial crisis, and the ongoing war in Iraq. Such events have also affected monthly tourist visits to Guam by as much as 50-60 percent. The Guam Visitors Bureau (GVB) has embarked on a plan to increase visitor arrivals to Guam by marketing to potential South Korean tourists. This effort has paid off well as Korean tourists accounted for 12.1 percent of the total visitor count in 2002. The GVB is considering tourists from China as another market. However, recent political events (e.g. detection of a Chinese submarine circling Guam in October 2004) and the heightened security following 9/11 have temporarily thwarted this effort.

General visitor arrival figures for tourism are listed in Table 6-2.

Year 1960	Year 1970	Year 1980	Year 1990	Year 2000
67,044	84,996	105,979	133,152	154,805
13% change (1950)	27% change	25% change	26% change	16% change

Table 6-1 -	Population	History
-------------	------------	---------

Source: U.S. Census Bureau, Department of Commerce.

Table 6-2 – Visitor Arrivals

Year – Number of Visitors						
1985 – 377,941	1989 – 668,827	1993 – 784,018	1997 – 1,381,513	2001 – 1,159,895		
1986 – 407,061	1990 – 780,404	1994 – 1,086,720	1998 – 1, 137,026	2002 - 1,058,704		
1987 – 483-956	1991 – 737,260	1995 - 1,361,830	1999 – 1,161,803	2003 - 909,506		
1988 – 585,799	1992 – 876,742	1996 – 1,362,600	2000 - 1,288,002	2004 - 1,156,863*		

Source: Guam Visitors Bureau. *Unofficial figures by GVB.

Increases in the number of hotel rooms and golf courses are a testament to the strategy of providing resort destinations in anticipation of increased visitor arrivals. This attitude is prevalent in Guam politics since tourism became a vital part of the island's economy.

Facilities to accommodate the visitor industry are listed in Table 6-3.

Sector	Year 1983	Year 1997	Year 2003
Hotel Rooms	2,125 rooms	5,940 rooms	9,220 rooms
Golf Courses	54 holes	180 holes	252 holes

Table 6-3 – General Tourist Accommodations

Source: Guam Visitors Bureau.

6.2.2 Land Use

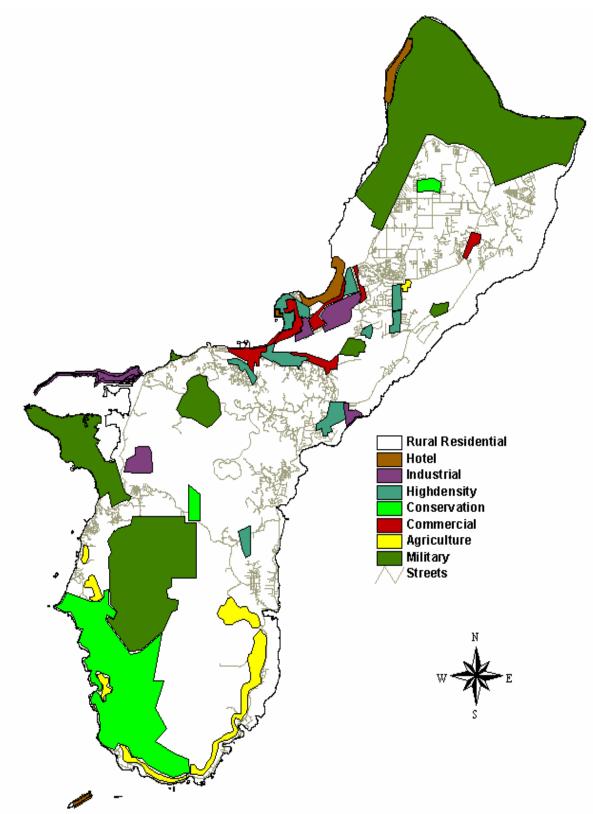
Based on analysis of aerial photography, zoning data, and available planning information, land use on Guam since 1966 (particularly residential, commercial, and industrial use) has increased dramatically during this 37-year period.

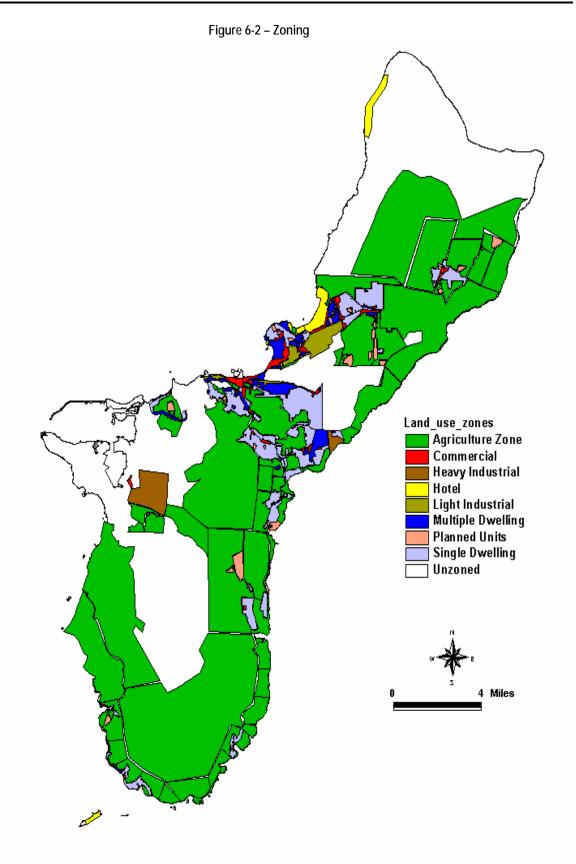
Generalized land uses are summarized on Table 6-4.

Land Use	1967 Master Plan (acres)	1997 Y Tano Ta Plan (acres)	2004 (acres) ¹
Roads	1,600 1.18%		1,954 ¹ 1.44%
Residential	2,001 1.48%		11,077 8.16%
Commercial	309 0.23%		1,053 0.78%
Industrial	181 0.13%		2,480 1.83%
Public/Semi-Public	1,161 0.86%		7,006 ³ 5.16%
Non-Urban/Agriculture	81,115 59.78%		38,800 ³ 28.60%
Military/Federal	45,716 33.70%	43,408	40,137 ⁴ 29.58%
Conservation	3,594 2.65%	19,526	19,526 ⁵ 14.39%
Parks		13,646	13,646 ⁵ 10.06%
TOTAL	135,677 ac. (100%)		135,679 ac. (100%)

Table 6-4 – Generalized Land Use

¹ Discrepancy in acreage is noted as follows: (1) 1967 Master Plan and current inventory from various planning documents – 135,680 acres; (2) GIS island polygon – 133,404 acres.


² Fixed Assets Report, Department of Public Works.


³ Guam Public Land Use Plan, Bureau of Planning. Territory of Guam Master Plan, Dept of Land Management. ³ Territory of Guam Master Plan and Guam Public Land Use Plan.

⁵ Y Tano Ta Land Use Plan, W.B. Flores/Strategic Planning Group.

As a reference point, existing land uses can be used to mark areas where new development activities may occur. Zoning, on the other hand, dictates how land is used within a given location. Figures 6-1, Generalized Land Uses and 6-2, Zoning, show generalized land use and zoning information. It should be noted that the zoning map of Guam has not been updated. Therefore, re-zones and Conditional Use Permit approvals by the Territorial Land Use Commission/Territorial Seashore Protection Commission (TLUC/TSPC) are not depicted.

High-density and commercial development is concentrated primarily along the Tumon coastline and extends inward toward Tamuning and Dededo. The majority of Guam's population resides in northern Guam (Tamuning, Dededo, and Yigo), while about 30 percent lives in central Guam (Agana Heights, Sinajana, Mongmong-Toto-Maite, Ordot-Chalan Pago, Barrigada, and Mangilao). In contrast, population in the south remains small due to rough terrain constraints and infrastructure availability.

6.3 Future Population

According to a recent report prepared by the Bank of Hawaii, "Guam's economy faces greater uncertainty than at any other time over the past ten years" (Guam Economic Report issued by the Bank of Hawaii, East-West Center, 2003). The author suggests steps that Guam can take to improve its economy, including defining what public good the government can provide, improving higher education, and appealing to the Department of Defense for increased military spending on Guam. In response, the local government has begun to act on these suggestions, as indicated in the following examples:

- Privatization of the Guam Telephone Authority has been implemented.
- Similar privatization efforts are currently under way at GWA.
- The United States Navy is repositioning three fast-attack submarines to its Naval Station on Guam.
- The U.S. Air Force announced that plans are under consideration for new military initiatives and associated facilities at Andersen Air Force Base.
- The Guam Government has made legislative efforts to market Guam as a regional headquarters for American corporations doing business in the Asia-Pacific region.
- The GVB is extending its outreach by targeting Chinese visitors.

Thus, there appears to be some room for Guam's economy to rebound from the various economic, political, and health-related setbacks of recent years. Given the potential for a reasonable economic recovery and with guarded optimism, given the uncertainties associated with any planning process, Guam's population is anticipated to grow modestly from 179,658 in Year 2010 to 257,232 by Year 2100. (See Exhibit 6A, Population Projection for projection details.)

Table 6-5 presents several population projection scenarios for Guam.

Year	Population	Lower	Constant	Medium	High
2000	154,805	154,805	154,805	154,805	154,805
2005	166,769	157,141	165,632	171,757	176,004
2010	179,658	159,512	182,583	190,565	200,105
2015	190,699	161,919	201,391	211,432	227,507
2020	202,419	164,363	222,259	234,585	258,662
2050	221,451	179,817	299,544	437,595	558,667
2100	257,232	216,942	545,860	1,236,970	2,016,142

Table 6-5 – Population Projection Scenarios

6.3.1 Census History

The population growth pattern on Guam has been one of consistent and steady growth. Since 1793, when the population of Guam was recorded at 3,584 by the Spanish government, population has grown in every census except one. This remarkable statistical pattern has continued for 21 consecutive time periods with only one exception. The exception occurred in the period from 1849 to1871, when the population declined by 21% (a slight decline also occurred earlier, between the censuses of 1710 and 1793.)

6.3.2 Population Projections Summary

Guam's population is projected to continue to grow, based on historical and U.S. Census Bureau population growth projections. However, growth rates are projected to slow in the future. The growth rates released by the U.S. Census Bureau for Guam have been used as the basis for the most likely population growth scenario for Guam.

As part of this projection process, regression analysis was performed to model the population growth trends. The trend since 1950, a period of economic activity perhaps more relevant to the future than other earlier periods, showed the growth trend to be linear, which means continued population growth in terms of the same number of persons each year but with declining population growth rates. As this analysis is highly consistent with the official U.S. population estimates, this statistical corroboration provided evidence that this was a reasonable approach. In addition to the linear regression, a regression equation was used to test the assumption that population might grow by a constant percentage each year, or as an exponential rather than a linear pattern. There is some evidence over particular time periods that this might also be a reasonable approach. Over a few decades the population would be very significantly higher and for longer time periods such as 50 to 100 years, the predicted population using such a growth function would be radically higher. The trend over the longer term of a century or more indicates a leveling off of the growth rate and provides evidence that the linear trend similar to the official U.S. projections may be more reasonable than an exponential growth scenario.

Population projections and confidence intervals produced in this analysis are included in Exhibit 6A to provide measures of variability inherent in any projection process. The population at various time periods will be expected to vary somewhat from the forecasts. While the overall projections of the U.S. Census Bureau are used for the basis of the total and area projections, it should noted that while this is thought to be a more plausible growth scenario, other growth patterns are not impossible both in the short and long run and yield very different results.

In addition to the growth rates used in the report and tables as a starting point for the projections, reasonable alternatives are shown on Table 6-5. The low growth alternative shows the projected population at a 0.3 percent annual growth. This is the growth rate used in the forecast for the years between 2020 and 2100. It represents very slow growth of a mature economy or one constrained by resources. The second option represents the official U.S. Census Bureau's growth projections. These are percentage growth rates declining over time from 1.5 percent for 2000 - 2010, growth of 1.2 percent from 2010 - 2020 and .03 percent from 2020 - 2100. The third option is constant growth in the number of persons, or a little over 2,000 persons added every year for all of the future periods, this is a numerical growth rate similar to that of the last decade. A medium percentage growth rate of 1.2 percent per year and a high percentage growth rate of 2.6 percent per year are also shown.

The medium percentage growth rate is more consistent with the growth in the last decade and with some longer-term averages in the historical record. The growth from 1960 - 1990 was very close to that rate so such high growth rates are possible.

The U.S. Census growth rate chosen for the starting point for the population projections in this report and the low 0.3 percent growth rate are viewed as minimum planning levels of population growth that can very reasonably be expected. Lower growth or even population losses could conceivably occur due to disease, natural or economic disasters, however absent that, the long term trends for Guam and worldwide generally show population growth. Population setbacks, which might occur in the short term, may be offset over the longer term by continuing growth. The high growth rate of 2.6 percent has occurred for several decades and plans must recognize that such growth over a period of decades can and has occurred. It is less likely however that such high growth rates will be sustained over periods of 50 to 100 years into the future.

In the ninety-nine year period from 1901 to 2000, the population grew from 9,676 to 154,805. The resulting population in 2000 was nearly sixteen times that of 1901. If the population continued to grow at such a rate, or sixteen times the population in 2000, it would reach over 2.4 million persons by 2100. The differences in the possible growth rates should argue for planning flexibility into capital and infrastructure plans. While the differences in populations differ moderately in the short-term periods of five to ten years, they vary radically over twenty, fifty or one hundred year horizons. While the U.S. Census growth rates or the constant growth rates seem most reasonable, it will be necessary to keep an eye on the growth rates to keep planning efforts on track.

6.3.3 Methodology

The population projection methodology used for this project involved a variety of techniques and procedures. The initial approach focused on the overall population of Guam and the growth trends for the last two centuries, with greater emphasis on trends in the most recent decades. These trends are affected by births, deaths and immigration. The U.S. Census Bureau, International Population Division, prepares population estimates and projections for various political and geographic entities, including Guam. Those projections incorporate various demographic trends and include information on births and deaths, and they are prepared in coordination with the respective governments. The Census Bureau's population projection growth rates for the island of Guam as a whole were used as a starting reference in the process. The next step was to review the historical trends and determine what the growth patterns have been in order to develop insights about what they might be in the future.

6.3.4 Geographic Detail of Projections

The population projections are comprehensive, covering all geographic areas of Guam. The adjusted population distribution projections for Guam are provided for each Census at the Block Group level in Exhibit 6B.

6.3.5 Projection Periods

The time periods for the projections use year 2000 as the base with projections for all of these levels of aggregation for 2005, 2010, 2015, 2020, 2050 and 2100.

6.4 Future Land Use

Current land use and zoning designations were analyzed to yield land use patterns. This process makes it possible to determine the relative mix of uses and locations where new development could conceivably occur. Zoning will continue to yield land uses in a consistent pattern. For this to occur, however, spot zoning must be kept to a minimum.

Based on land use and zoning data, future development patterns on Guam will be contiguous in nature. This assumption follows the concentric model (invasion/succession concept) in urban spatial organization theory. Developable and re-developable lands will expand given current trends. Therefore, it is likely that high-density projects will continue in Tumon, Tamuning, and Dededo.

Village meetings conducted by GWA from August 18, 2004 to October 21, 2004, yielded little information regarding desirable future land uses. Community input focused primarily on the ability of existing infrastructure to accommodate current and future development, as well as the need to protect the island's water source.

In contrast, a GVB survey of resident attitudes regarding development provides substantial insights about economic development issues. Resident views were systematically documented in the *Survey* on *Tourism Attitudes of Guam Residents* (STAR) conducted by professional research firms under contract to GVB in October 1993, 1997 and 2000. Because the surveys were conducted by professionals using large samples, the findings are viewed as statistically reliable. Residents' perceptions of the visitor industry reported in the 1993 report are discussed in the following text.

In general, Guam residents view tourism as having a positive effect on the family. Nearly 45% believe it definitely has a good effect on their family, 31.6% think it has brought both detrimental and beneficial effects, and less than 5 percent feel that is has had an adverse impact on their family. Reasons for the positive perceptions about the visitor industry centered mainly on tourism as being:

- A source of employment and income for the family
- A boost to the island's economy and standard of living
- Revenue for the local government
- An enhancement to the social, cultural, and recreational life, and
- A captive market for businesses on the island.

On the other hand, effects of tourism that were considered negative were increases in:

- The cost of living
- Prices of commodities
- Value of land
- Population rate, and
- Crime rate.

The 1997 survey contained similar sentiments favoring tourism but expressed similar concerns as well. According to the summary findings, "Respondents were generally very positive towards the visitor industry. They were satisfied with the current level of tourism on Guam and, for the most part, were in favor of continuing the expansion of the tourism industry." By 1997, the economy had undergone very rapid development, so that there were new concerns about the pace of development and infrastructure deficiencies, as well as increased population and migration to Guam. The 1997

survey contained questions and obtained responses about development specifics with the findings summarized in the following items:

- Only 28% agreed with the statement that "Casino Gambling should be allowed on Guam."
- 65% agreed that "Government funds should be used to build public attractions like aquariums and zoological gardens."
- More than half of the respondents (54%) thought that the land currently under the administration of the Chamorro Land Trust Commission should be used for activities to improve tourism on Guam.
- Respondents believed that Tumon was overdeveloped and that development there should be stopped. 62% agreed with the statement that "We should stop building hotels on Tumon Bay."
- Respondents were generally opposed to developing Hagatna Bay to be like Tumon Bay (54%), but residents did believe that development of Hagatna Bay should continue.
- Nearly half of respondents (49%) did not favor having hotels and condominiums built in their villages, while one-third favored the idea. More than half (57%) would favor a restriction on large-scale development in their villages, but 25% would favor them.
- Respondents were nearly two to one against the promotion of further development of golf courses. 60% of respondents were against the promotion of golf course development, while 35% were in favor of the continued promotion of golf course development.

By the time of the 2000 survey, the rapid pace of economic growth seen in the late 1980s and early 1990s had slowed. The opinions expressed in the survey of 2000 reflected changes due to the less vibrant economy.

In the 2000 survey, there was a sharp increase in the view that there could be more visitors coming to Guam. There had been a gradual decrease in the proportion of residents who felt that too many outsiders were immigrating to the island. This figure fell from 51% in 1993, to 46% in 1997, to 33% in 2000. But this attitude did not extend to selling land, as 60% of Guam's residents believed that selling local land to foreign investors should be prohibited. Residents also favored a moratorium on building hotels in Tumon, and the creation of special tourism zones to limit development. Residents were not in favor of a moratorium on development in Hagatna Bay, though they did not wish it to be developed to the same extent as Tumon. They were also not interested in developing more golf courses.

Interestingly, other questions provided information that would indicate a greater geographic diversity of tourism development and activities. Residents of Guam do not agree with confining visitor facilities to Tumon Bay. One result of focus group sessions was that the perception that limited and managed expansion of the industry into the villages would be welcomed by local residents. In fact, only 14% agreed with the statement that "Visitors should be confined to Tumon Bay and kept away from the rest of the island."

Resident attitudes, therefore, may be insightful in the planning and forecasting of future development patterns. The residents' desires, as articulated in these surveys, are generally consistent with the population, hotel, and employment growth patterns projected in this report. Resident attitudes will undoubtedly have a significant influence in shaping future development. However,

individual and property rights of landowners, as well as the economic and geographic characteristics of various properties, may permit types or amounts of development or development in areas that are not entirely supported by popular opinion.

Future land use on Guam is not anticipated to vary significantly from current patterns, at least not in the next 10 to 20 years. The first population wave is expected to occupy existing vacant residential units and new single-family residential units. High-density uses will continue to come in the form of hotel, condominium, and apartment complexes. Hotel development will grow at a steady pace and will remain confined, for the most part, in Tumon and adjacent areas where infrastructure is intact. Sporadic development consisting of high-density units (such as those proposed at Dededo-Urunao, Yona-Manengong, Yigo-Marbo, Agat-Nomura, and Barrigada-PacEcon Hotel) is anticipated to take place gradually, as the economy continues to embrace tourism and military activities increase at a modest pace. Original landowners of former military properties, who are gearing toward highdensity or commercial development, are likely to seek long-term financing for their projects. Commercial uses will also grow steadily. Industrial activities will occur primarily within the airport property. Essentially, most future development or redevelopment will likely be in the same location, or near, existing development. The basis for this assumption is Guam's limited land mass and availability of infrastructure.

Most high-intensity development will occur in central and northern Guam. In contrast, southern Guam is likely to retain its slower-paced, traditional environment. This assumption is based on physical development constraints, such as terrain, wetlands, and water springs, as well as available infrastructure.

As the economy matures, Year 2050 may see the beginnings of a build-out scenario. By Year 2100, build-out will likely be reached due to Guam's limited landmass. This scenario assumes that the aquifer's sustainable yield and the surface water systems in the south can accommodate the projected population of Years 2050 and 2100 (i.e., 221,451 and 257,232, respectively) without overstressing the island's overall water supply.

6.4.1 Methodology

Future land uses were determined by acquiring project proposals approved by the TLUC through Notices of Action. It was verified that these proposed projects have not yet been constructed by reviewing documents and the building permit database at the Department of Public Works (DPW), Building Permits Division. Project names and associated lot descriptions were crosschecked with the database on building permit issuance. Those projects identified as not yet built remain as planned proposals that can be viewed as indicators of where future projects may occur based on proximity to developed areas and other physical land characteristics. Projects were reviewed and categorized by the project development forecast time frames, based on infrastructure availability, access to the sites, and communications with government land use officials. The time frame for actual completion of these projects is, of course, subject to revision. Some may be completed sooner than scheduled, some later, and some cancelled altogether, and new projects may be added. A periodic review to update the status of projected developments is therefore essential.

6.4.2 Private Development Proposals

Private development proposals refer to potential developments on private lands. This category anticipates high-density types of development that cater primarily to the tourism

industry. Hotels and condominiums fit this description. There is also the potential for highdensity development by landowners who have acquired large parcels but currently do not have the immediate funds necessary to finance their projects. These proposals are anticipated to materialize over a longer time frame.

Proposed for low-density facilities and not as robust as hotel resorts, eco-tourism is also a foreseeable development trend. In this case, development will manifest itself in "thatched roof" units geared towards sociocultural themes. Low-density dwelling units may also take place through land subdivision and associated housing projects. Such development may provide a variety of cultural interest projects but are not likely to present substantial infrastructure demands.

Figure 6-3, Future Private Sector Development, identifies the location of potential development sites of projects that have been approved by TLUC/TSPC, but have not yet been issued building permits by the DPW.

A notable area in terms of potential economic development is the site of the now defunct Tiyan economic development zone government project. This area is proximate to near the Antonio B. Won Pat International Airport and could conceivably be developed through private land ownership (many of the properties have since been returned to original landowners). Conceptually, this area has the potential to contain a free trade zone, commercial and light industrial park facilities (e.g., airport support, shopping, banking, restaurants, and fitness clubs).

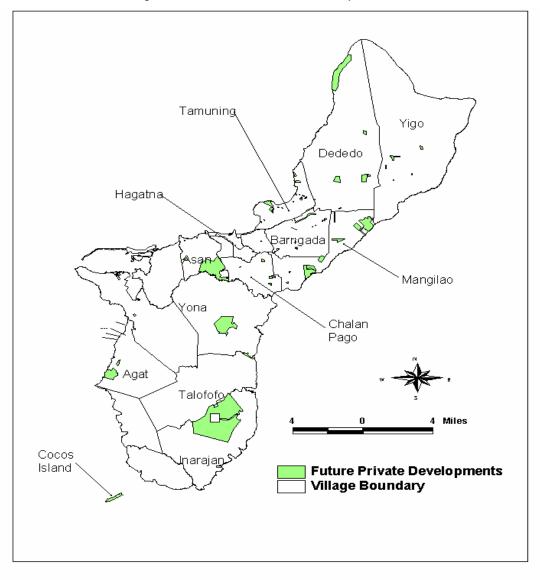
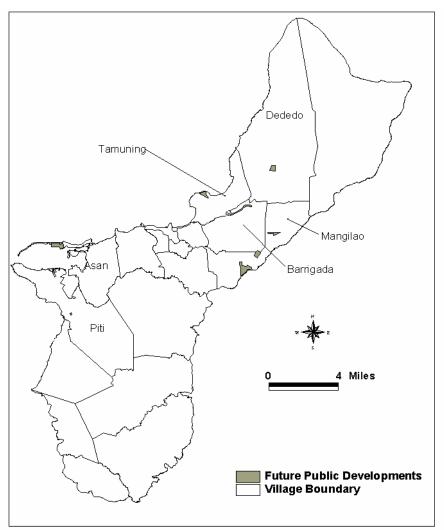



Figure 6-3 – Future Private Sector Development

6.4.3 Public Development Proposals

Public development proposals refer to potential development of government-owned property (i.e., Government of Guam). To date, the major development proposals include the landfill sites, the old hospital site, airport expansion, port facility expansion, and several public schools. Figure 6-4, Future Public Sector Development, shows the location of these potential development sites.

6.4.4 Military Development Proposals

Existing military facilities on Guam consist primarily of Air Force and Navy bases. Because of its strategic geographic location, Guam is placed in high regard with respect to deployment of military-related activities concurrent with world events.

Air Force officials have stated that additional housing units are envisioned to support planned initiatives within the Andersen Air Force Base boundary. It is anticipated that ancillary development may spill over into the Yigo commercial and residential areas. Navy officials have reported to local print media that they anticipate an increase in the number of attack submarines to be home-ported on Guam. Nine attack submarines are being considered at the time of this writing. This translates to approximately 1,000 sailors and their families that will require housing accommodations. It is assumed, at this point, that housing needs will be provided on base.

6.4.5 Traffic Analysis Zones

The Guam Highway Master Plan, prepared by the DPW in 1992, anticipates that the number of daily vehicle trips will increase by 132% in the 1990-2010 period, which is consistent with its population and employment forecasts. The difference in growth rates is attributed to the trend toward smaller average households, which tend to produce more trips than larger households.

Table 6-6 summarizes daily vehicle trips and population.

Table 6-6 – Daily Vehicle Trips and Population

Factor	1990	1995	2010	% Increase 1990-2010
Population	133,152	158,677	237,288	78
Daily Vehicle Trips	434,466	535,143	1,008,917	132

Source: Guam Highway Master Plan, 1992, Dept. of Public Works

The analysis also anticipates that, based on population and daily vehicle trips, the village of Tamuning will play a dominant role as the island's employment center, as indicated in Table 6-7. DPW is currently updating the Highway Master Plan.

Vehicular trip origins are compared in Table 6-7 for years 1990 and 2010.

Daily Vehicle Trip Origins % Increase Sector 1990-2010 1995 1990 2010 Yigo, Dededo 194,024 86,316 175,484 125 Tamuning 141,329 202,231 375,604 166 Agana, Agana Hgts, Asan, M-T-M, Sinajana 72,457 76,875 160,539 122 36,912 Barrigada, Mangilao, Chalan Pago-Ordot 66,667 132,682 99 Yona 9,215 5,862 34,127 270 Agat, Piti, Santa Rita 46,171 29,710 84,328 83 Inarajan, Merizo, Talofofo, Umatac 12,311 8,069 27,613 124 TOTAL 434,466 535,143 1.008.917 132

Table 6-7 – Comparison of 1990 and 2010 Vehicle Trip Origins

Source: Guam Highway Master Plan, 1992, DPW

6.4.6 Aquifer Protection

Because the groundwater source in northern Guam is considered the principal water supply for the island, the GEPA asserted a policy that residential development on lots of 9,600 square feet or less, depending on the zoning standard, should be connected to the nearest sewer line. If unsewered, the minimum lot area should be 19,200 square feet. Many rural areas in northern Guam are not sewered. Numerous single-family residential units are located in rural areas, so septic tanks and leaching fields are the primary means of sewage disposal. Consequently, local environmental officials suspect that high concentrations of nitrate may be making their way to the aquifer.

The EPA, under the terms of the Safe Drinking Water Act, formally determined and identified the northern aquifer as the sole and principal groundwater system on Guam. The determination further states that if the ground waters were contaminated, a significant hazard to public health would exist (Federal Register, Volume 43, No. 81).

By virtue of the aquifer's role as a primary water source, any development over it will be dictated, to a large extent, by the need to protect the water source. Thus, GEPA has set policy direction on development standards for areas that are serviced by wastewater disposal facilities and for those areas that are not. Thus, future development in rural northern Guam will likely be limited to single-family residential units. Considerable emphasis will be placed on homeowners to connect to available sewer lines. Clearly, GEPA considers aquifer protection a high-priority project.

6.4.7 Year 2005 Land Uses

Based on research and meetings with government officials, construction activities are anticipated to begin within a four-year time frame (i.e., up to Year 2009) for the projects listed in Table 6-8, Year 2005 Potential Developments. The population forecast for Year 2005 is 166,769, an increase of approximately 11,964 people from Year 2000. The vacant residential units (8,908) and proposed subdivisions (251 units) can accommodate this first population wave.

Development proposals anticipated to commence in 2005, or shortly thereafter, are listed in Table 6-8 and depicted on Figure 6-5, Year 2005 Potential Developments.

Project	Map ID	Location	Lot Description	Units
Paradise Estates	1	Dededo	T276-REM	98 (Phase I)
Gil-Breeze Subdivision	2	Yigo	T94002	89
Royal Gardens	3	Tamuning	T1314B16L45	36
Oka Point Subdivision	4	Tamuning	T10B2NewLR1	28
Adacao Elem. School	5	Mangilao	5402-R5New-R5	550 students
Liguan Terrace Elem.	6	Dededo	T100, Parcel 1A	550 students
Batulo High School	7	Dededo	L10122-R18	1,200 students
Astumbo Middle School	8	Dededo	L10125-11-2	700 students
Wettengel High School	9	Dededo	L10125-11-2	1,200 students
	251 Units			

Table 6-8 – Year 2005 Pc	otential Developments
--------------------------	-----------------------

Residential unit vacancy data was obtained from the Census 2000 database to provide a glimpse of the number of vacancies throughout the island. Table 6-9, Census 2000 - Housing Unit Vacancies, illustrates the breakdown of these vacancies is by census tract. As assumed, the first population wave occurring in Year 2005 and beyond is anticipated to fill these existing vacant units, as well as the new single-family residential units.

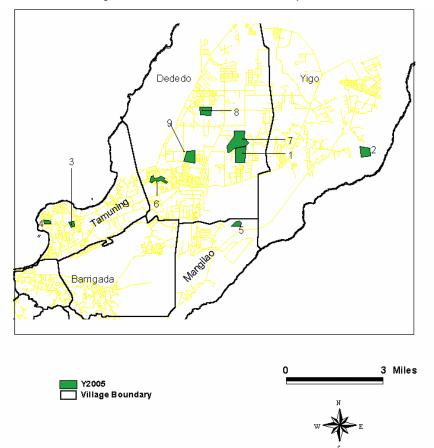


Figure 6-5 – Year 2005 Potential Developments

Table 6-9 – Census 2000 - Housing Unit Vacancies					
Census Tract	Location	Total Units	Occupied Units	Vacant Units	
9501	Yigo	831	695	136	
9502	Yigo	553	487	66	
9503	Dededo	871	473	398	
9504	Dededo	2432	2055	377	
9505	Yigo	1822	1558	264	
9506	Yigo	2283	1894	389	
9507	Dededo	2203	1896	308	
9508	Dededo	2130	1838	292	
9509	Dededo	1790	1523	267	
9510	Dededo	736	606	130	
9511	Dededo	1956	1625	331	
9512	Dededo	0	0	0	
9513	Mangilao	5	4	1	
9514	Mangilao	1448	1295	153	
9514	Mangilao	7	6	133	
9516	Barrigada	0	0	0	
9510	Barrigada	649	581	68	
9517 9518	Barrigada	649 5	5	08	
9518	Tamuning	3373	2403	970	
9519	Tamuning	736	2403 567	970 169	
9520	Tamuning	730	486	242	
9521 9522		1465	480 1167	242	
9522	Tamuning	1405			
9523 9524	Tamuning Tamuning	705	873 457	228 248	
9524 9525		0	437	0	
9525 9526	Mongmong Toto Maite	592	504	88	
	Mongmong Toto Maite	1289		00 122	
9527	Barrigada		1167		
9528	Mangilao	1	1	0	
9529	Mangilao	1298	1054	244	
9530	Mangilao Chalan Daga Ordat	1167	830	337	
9531	Chalan Pago Ordot	1920	1573	347 115	
9532	Sinajana Manamang Tata Maita	857	742		
9533	Mongmong Toto Maite	1510	1129	381	
9534	Hagatna/Tamuning	395	268	127	
9535	Agana Heights	67	63	4	
9536	Agana Heights	1126	995	131	
9537	Asan	596	538	58	
9538	Asan	64	14	50	
9539 0540	Yona	1093	950 526	143 116	
9540 9541	Yona Santa Pita	652	536		
9541 9542	Santa Rita Santa Rita	0 1120	0 1029	0 109	
9542 9543		1138 547	448		
	Piti Piti	547		99 2	
9544 0545		29 1160	26 507	3	
9545	Santa Rita	1160	597 154	563	
9546	Santa Rita	219	154	65 117	
9547	Agat	760	643 655	117 04	
9548 9549	Agat	739	655	84	
	Agat Talefefe	0	0	0	
9550 0551	Talofofo	0	0 720	0	
9551 0552	Talofofo	849 701	738	111 57	
9552	Inarajan	701	644 471	57	
9553	Merizo	535	471	64 17	
9554	Umatac	179	162	17	
9555	Yigo Parrigada	0	0	0	
9556	Barrigada	346	344	20	
	TOTALS	47659	38769	8908	

Source: U.S. Census Bureau.

6.4.8 Year 2010 Land Uses

The second population wave (12,899 people) is likely to continue filling vacant units and occupy new residential units in the same manner as the first population wave in Year 2005. Residential development, together with military housing units, will accommodate the housing needs of this population wave.

Development proposals anticipated to begin in 2010, or thereafter, are illustrated in Figures 6-6 and 6-7 and listed in Table 6-10, Year 2010 Potential Developments.

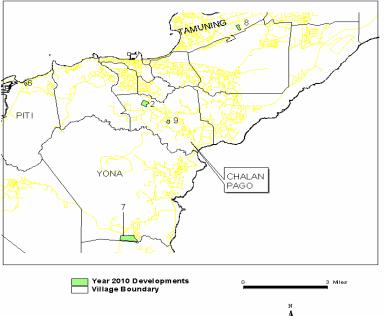
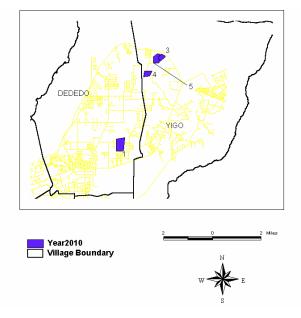



Figure 6-6 – Year 2010 Potential Developments (Central)

Figure 6-7 - Year 2010 Potential Developments (North)

Project	Map ID	Location	Lot Description	Units
Paradise Estates	1	Dededo	T276-REM	98 (Phase II)
Chalan Pago Subdivision	2	Chalan Pago	T19212	40
Yigu Subdivision	3	Yigo	T63003	38
Gil Baza Subdivision	4	Yigo	T63004	79
Yigo Subdivision	5	Yigo	T6301	79
Piti Elem. School	6	Piti	L113-REM	550 students
DanDan Landfill Site		Inarajan		
Navy Housing		U.S. Navy		1,000
Air Force Housing		U.S. Air Force		
Laguina Farms	7	Yona	L154-9	120
Sabana Plaza Condo	8	Tamuning	L5166-3-10	48
Southern Cross Subdivision	9	Chalan Pago	L3347-R1-R9	35
	1,537 Units			

Table 6-10 – Year 2010 Potential Developments

6.4.9 Year 2015 and 2020

By this time, it is likely that residential unit vacancies will be minimal. New development for the third and fourth population waves will commence. This growth, consisting of up to 20,000 new residents for Years 2015 and 2020, will be accommodated by proposed developments, as listed in Table 6-10 and shown on Figure 6-8 through Figure 6-21 on the following pages. Though these developments represent extreme growth (a total of 18,000 housing units), not all are expected to be constructed. Should its developers choose, the particularly large projects such as DanDan Estates, Lonfit New Town, and Manengon Hills may not materialize due to their proximity to proposed landfill sites and inadequate infrastructure. The Urunao development may not materialize due to its remote location, archaeological historic significance, and infrastructure shortfalls. Nevertheless, these development projects signify the magnitude of future development potential on Guam and the realization of potential economic benefits.

The Guam International Airport Authority has begun construction activities on various airportrelated projects. However, full realization of a potential economic zone through private development may extend beyond Year 2020. Because of improved airport facilities and the attraction of commercial activities, more residents are likely to travel in and out of Tiyan.

Out of the 18,000 units anticipated in Year 2015, some of the smaller development projects (including hotel rooms) might not be built in Year 2015. Some projects will spill over into Year 2020, which is appropriate, in order to allow the infrastructure to "catch up." Thus, housing accommodation for Years 2015 and 2020 are essentially merged.

6.4.10 Year 2050 and 2100

By these time periods, it is assumed that Guam's potential to accommodate increased population may depend on the capabilities of the water supply and distribution systems. By Year 2100, the population is forecast to reach up to 257,232 residents (i.e., an increase of 35,781 new residents from Year 2050).

Developable lands for these time periods were identified through a process of elimination. Using aerial photography and overlaying it with existing and future uses, it appears that developable lands may be confined primarily to northern Guam and to a few areas in the south, as indicated in Figure 6-22. This slow growth development scenario for southern Guam is attributed to rugged terrain, the presence of several springs, and numerous wetland areas. The lands designated in Dededo and Barrigada are mostly former military lands (e.g., Harmon Cliffline). The lands designated in Yigo are privately owned for the most part, but some are government-owned. The lands in Urunao and Jinapsan are privately owned but are anticipated to grow slowly. Access to Jinapsan may open to the general public, but development activity will be limited according to the Air Force's mission at that time. The future treatment of these lands, as well as the government lands leased to residents of Chamorro ancestry for up to a period of 99 years, are sketchy. Many original landowners (i.e., landowners whose lands were returned to them by the Government of Guam subsequent to the federal excess lands disposition process) lack the financing to develop their lands. At the same time, it is difficult to develop the government-leased lands due to the terms of the 99-year lease agreement.

Developments anticipated in 2015 and 2020 are listed in Table 6-11.

Project	Map ID	Location	Lot Description	Units
Machanao Woods Subdivision	1	Dededo	10100-5	144
Tai-Pan Corp	2	Yigo	7028-R5-NEW	16
Santa Lourdes Subdivision	3	Yigo	7128-2 & 7128-3R	102
Water Park	4	Tamuning	10113-R3	
Ypaopao Phase III	5	Dededo	T276-REM	79
Guam Yamanoi Condo	6	Tamuning	5089-1-3R	102
Dai Sucho Condo	7	Tamuning	5076-R4-4	12
Franklin Leong Subdivision	8	Yigo	7032-4-R2	15
Terry Wilson Subdivision	9	Yigo	10111-10-1	44
Hotel (Peter Wang)	10	Tamuning	5075-Part-3	
Hotel (Nakashima)	11	Tamuning	5075-REM1-1	
Sky City Marianas Hotel	12	Tamuning	5089-13-1	160
Hotel	13	Tamuning	5076-1-6NEW	
Ravinder Dewan Subdivision	14	Yigo	T10417	17
Yury Enterprise Condo	15	Mongmong-Toto	1133-R1	18
Kojimaya Condo	16	Tamuning	2146-1-10	12
Cheng Yen Hotel	17	Tamuning	5142-1-4NEW	212
Ishwar Hemlani Hotel	18	Merizo	247-R1	34
Sang Ung Yu Condo	19	Agana	B14	20
Oceanview Garden Subdivision	20	Tamuning	2152-F-RNEW-1	13
Casa Dos Amantes Hotel	21	Tamuning	5144-1NEW	48
Agana Bay Condo	22	Tamuning	2125-2-R1	80
Bayview Resort Hotel	23	Tamuning	5028-4NEW	222
Toyo Real Estate Condo	24	Tamuning	5114#5-R1-NEW	21
Oceanview Garden Homes	25	Tamuning	T1314B16	42
UDL, Inc. Condo	26	Tamuning	5160-6-3	36
ParaOceana Condo	27	Tamuning	5022-5NEW-1	28
Del Rosario Subdivision	28	Yigo	T911L3-R16	14
Lucky Dragon Subdivision	29	Tamuning	5076-1-4	17
As-Yigu Estate Subdivision	30	Yigo	7028-5-1NEW	17
PDG Village	32	Dededo	10053-5-R1NEW	66

Table 6-11 – Year 2015 &	2020 Potential Developments
--------------------------	-----------------------------

Project	Map ID	Location	Lot Description	Units
Petlas Condo	33	Mangilao	2314-2	25
Paicicon Condo	34	Barrigada	T219-B2-L5-R1	21
Barrigada Terrace	35	Barrigada	T1841-L1028	30
Willson Subdivision	36	Dededo	T10310	44
I Lisong Housing	37	Barrigada	T1417	96
Manengon Hills	38	Yona	T2511	2350
Zion Town	39	Barrigada	T1428	16
Manibusan Condo	40	Barrigada	2176-3-15NEW	12
Fuji Development Housing	41	Barrigada	T9-BD-L2-2,	23
Visat-Mar Condo,	42	Asan	289-2New	12
Keiyo II Condo	43	Dededo	T1424-4-R1	21
Keiyo Condo	44	Dededo	T1424-4-1	13
Agana Marina Hotel	45	Agana	Agana Boat Basin	440
Agat Hilltop Gardens	46	Agat	195-1-3NEW	420
S&R Hotel	47	Agat	310-1	18
Corps of SDA Hotel	48	Agat	453-3NEW-2	273
Lonfit New Town	49	Asan	450	6046
Okso Taguac Condo	50	Asan	A-6	240
Oshima Apts	51	Asan	429-6REM	54
CAS Int'l Hotel	52	Barrigada	5211-2-2-3	78
Kanada Palms Condo	53	Barrigada	2352-R6	39
Pacific Econ Hotel	54	Barrigada	5351-4-5	518
Palm View Townhouses	55	Barrigada	T9BC-L1	26
Valuant Townhouses	56	Barrigada	2358-1	65
Golden Palm Condo	57	Chalan Pago	3268-4	30
Pago Bay Hills Condo	58	Chalan Pago	3436-R1	68
Conga Terrace Condo	59	Chalan Pago	3405	135
Sabanan Magas Condo	60	Chalan Pago	3461	58
Micronesia Condo	61	Chalan Pago	19.28A-R3	154
Dandan Estates Development	62	Inarajan	B-REM-2	920
Fadian Hotel	63	Mangilao	T157-NEW	1436
Marbo Cave Resort	64	Mangilao	T1531	1800
Sanchez Apts	65	Mangilao	P19.75.9	120
Kurason Guahan Hotel	66	Talofofo	91-1A	150
Faifai Beach Resort	67	Tamuning	10116-R1	400
Cocos Island Resort	68	Merizo	Cocos Island	118
Urunao Hotels	69	Dededo	Urunao	500 -1000
New GCC Campus	70	Mangilao	5433 & 5434	
Old Hospital Site	72	Tamuning	5173-1-R2NEW	
Ukudo High School	73	Dededo	10120-16	
Luayao High School	74	Mangilao	5401N-R4	
		mangiluo	0.0.11111	-

Table 6-11 – Year 2015 & 2020 Potential Developments (continued)
--

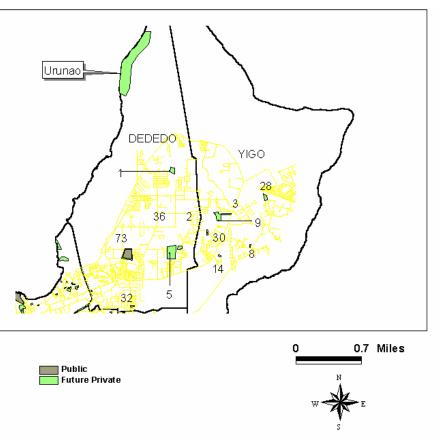
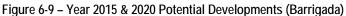
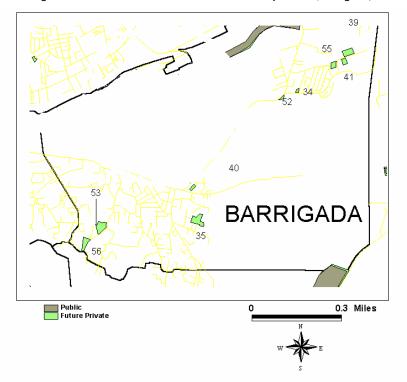




Figure 6-8 – Year 2015 & 2020 Potential Developments (Dededo/Yigo)

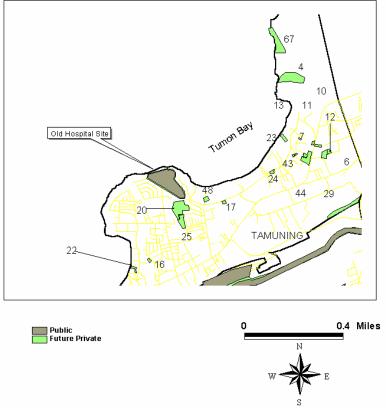



Figure 6-10 – Year 2015 & 2020 Potential Developments (Tamuning)

Figure 6-11 - Year 2015 & 2020 Potential Developments (Mangilao south)

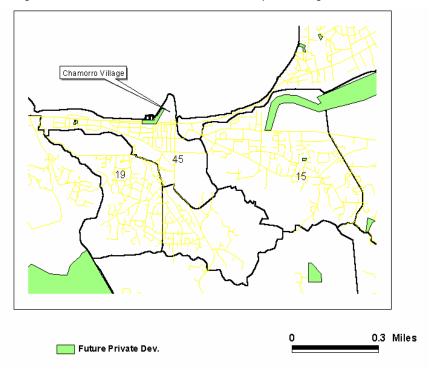
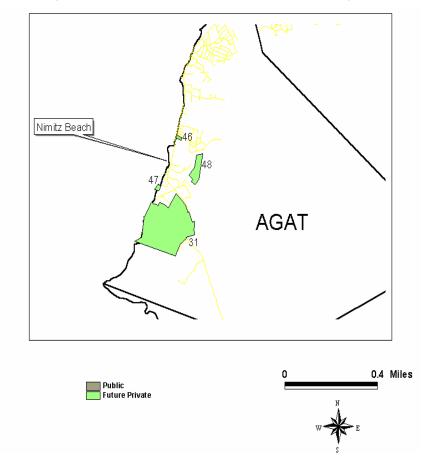



Figure 6-12 – Year 2015 & 2020 Potential Developments (Agana & MTM)

Figure 6-13 - Year 2015 & 2020 Potential Developments (Agat)

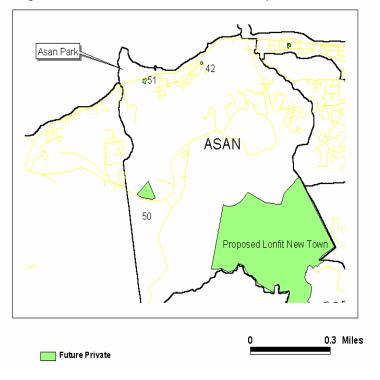
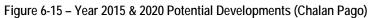
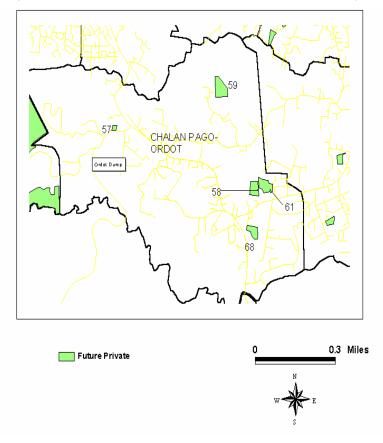




Figure 6-14 – Year 2015 & 2020 Potential Developments (Asan)

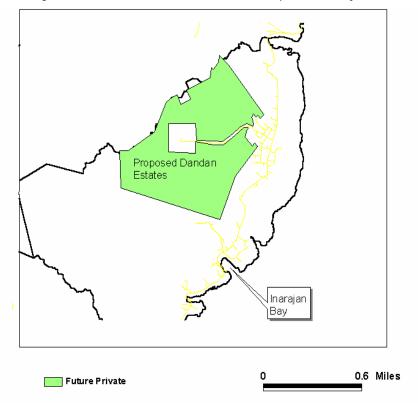
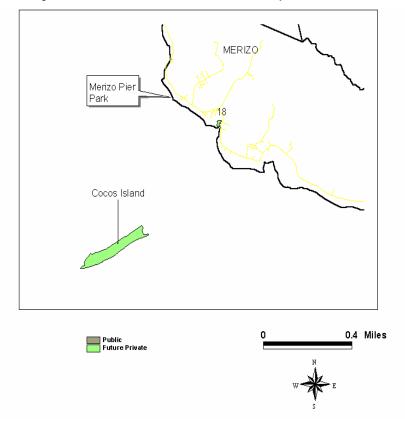



Figure 6-16 – Year 2015 & 2020 Potential Developments (Inarajan)

Figure 6-17 – Year 2015 & 2020 Potential Developments (Merizo)

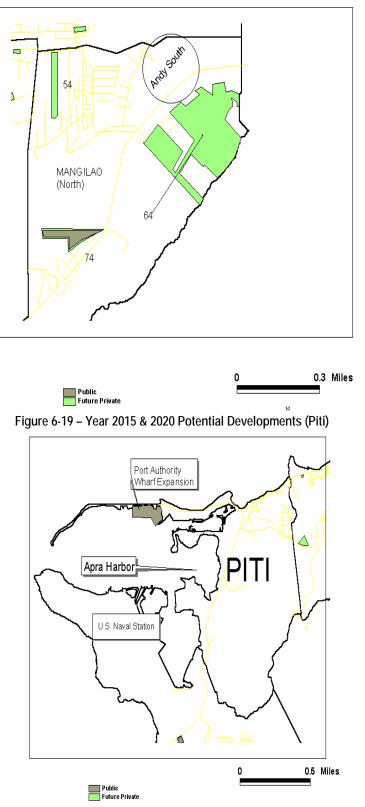


Figure 6-18 - Year 2015 & 2020 Potential Developments (Mangilao north)

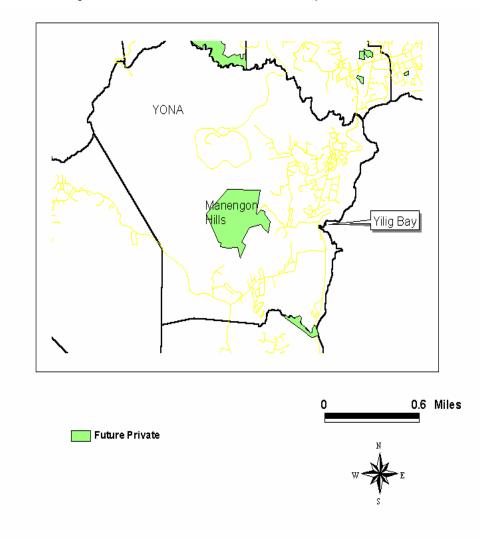


Figure 6-20 – Year 2015 & 2020 Potential Developments (Yona)

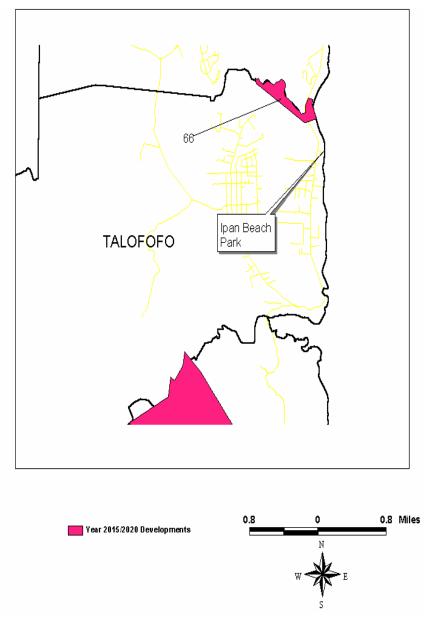


Figure 6-21 – Year 2015 & 2020 Potential Developments (Talofofo)

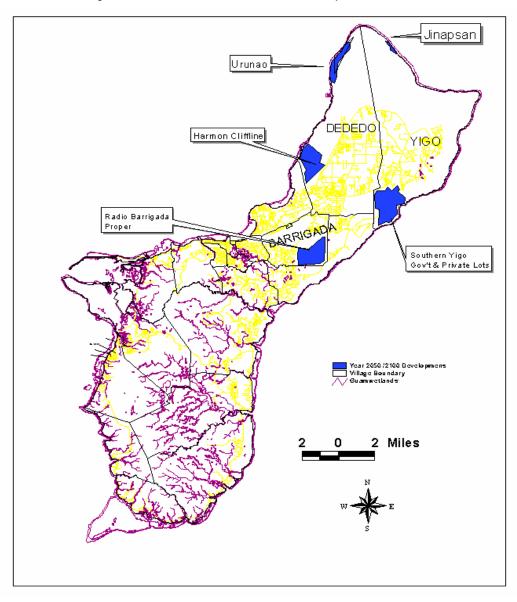


Figure 6-22 – Year 2050 & 2100 Potential Developable Lands

6.5 Future Population Distribution

This section covers the geographic distribution of growth anticipated to occur for years 2005, 2010, 2015, 2020, 2050 and 2100. The distribution area detail is by the census tract block group system, chosen for its suitability in providing area specific data. The population distribution data are essentially an adjustment of the block group projection based on zoning and future proposed development projects in the private, public, and military sectors.

Resident population was extracted from 2000 Census of Population. Hotel population was compiled from a variety of sources, including GVB data, telephone listings, on-line research, and onsite visits to the various hotel properties. Private sector employment data by village was obtained from the 2002 Economic Census, while federal and Government of Guam employment data were added to create employment estimates by village. Large establishments were geo-coded based on their actual geographic locations. The remaining establishments in the villages were allocated based on commercial and industrial zoning designations. Population growth capacity was developed based on zoning standards (Title 21 GCA) and the actual densities of areas that are fully developed.

6.6 Findings

Because Guam has a relatively low population density, there is room for growth in most areas without reaching the population capacity provided in the population growth in Exhibit 6B, Population Growth Table. Hotel employment capacity is not seen as a constraint for growth during the forecast period except for Tumon. It appears that by Year 2020 growth will occur in areas other than Tumon. Comments provided by various Government of Guam agencies downplayed the importance of Tiyan as an economic development zone due to return of excess lands to original landowners. Military sector officials provided personnel data but lacked site-specific housing facilities information. Year 2010 military projections can be incorporated into the water modeling hydraulic analysis once site-specific housing locations are identified (see Exhibit 6C, Population Projection).

6.7 Recommendations

It is highly recommended that this report be updated periodically to reflect population and land use changes as they occur; and ensure consistency with the goals and objectives of the Guam land use master plan as it is updated.

Exhibit 6A – Population Projection

Demographic Indicators:	2000 and 2025
	200

0 1		
	2000	2025
Births per 1,000 population	24	15
Deaths per 1,000 population	. 4	6
Rate of natural increase (percent)	2.0	0.9
Annual rate of growth (percent)	2.0	0.9
Life expectancy at birth (years)	76.9	81.4
Infant deaths per 1,000 live births	. 6	5
Total fertility rate (per woman)	. 3.1	2.1

Midyear Population Estimates and Average Annual Period Growth Rates:

-				-		
			Gro	wth		
Year	Population	Year	Population	Period	Rate	Timeline:major population events.
1950	59,900	1995	144,190	1950-1960	1.1	1.1
1960	66,900	1996	145,324	1960-1970	2.6	2.6
1970	86,470	1997	146,799	1970-1980	2.1	2.1
1980	106,869	1998	149,724	1980-1990	2.3	2.3
1990	134,125	1999	152,590	1990-2000	1.5	1.5 1.92
2000	155,324	2010	180,692	2000-2010	1.5	1.5
2001	158,330	2020	203,216	2010-2020	1.2	1.2
2002	161,057	2030	222,166	2020-2030	0.9	0.9
2003	163,593	2040	235,135	2030-2040	0.6	0.6
2004	166,090	2050	242,692	2040-2050	0.3	0.3 0.9

Midyear Population, by Age and Sex: 2000 and 2025

	200	0		2025-			
AGE	TOTAL	. MAL	E FEMA	LE T	OTAL	MALE	FEMALE
TOTAL	155,32	4 79,42	23 75,90	1 213,	329 107	7,552 10	05,777
0-4	16,863	8,848	8,015	16,191	8,325	7,866	
5-9	16,127	8,300	7,827	16,194	8,327	7,867	
10-14	14,360	7,268	7,092	16,148	8,298	7,850	
15-19	12,453	6,303	6,150	15,982	8,206	7,776	
20-24	11,951	6,100	5,851	16,468	8,434	8,034	
25-29	12,790	6,502	6,288	16,655	8,685	7,970	
30-34	12,895	6,734	6,161	15,866	8,091	7,775	
35-39	12,767	6,687	6,080	14,047	7,024	7,023	
40-44	10,502	5,411	5,091	12,108	6,034	6,074	
45-49	9,072	4,628	4,444	11,540	5,801	5,739	
50-54	7,609	3,861	3,748	12,175	6,077	6,098	
55-59	5,041	2,571	2,470	11,992	6,124	5,868	
60-64	4,576	2,218	2,358	11,411	5,784	5,627	
65-69	3,426	1,634	1,792	8,867	4,348	4,519	
70-74	2,476	1,290	1,186	6,979	3,301	3,678	
75-79	1,421	700	721	5,073	2,287	2,786	
80+	995	368	627	5,633 2,	406 3,	227	

Source: U.S. Census Bureau, International Data Base, March 2004 version.

Exhibit 6A - Population Projection (continued)

0.978	r ²
0.989	r
6322.851	std. error of estimate
6	observations
1	predictor
	variable
Y	dependent variable

		,				
	·				confidence inte	erval
variables	coefficients	std. error	t	p-value	95% lower	95% upper
			(df=4)	,		
intercept	a = -					
	3,843,853.85					
	71					
X1	b = 1,997.6971	151.1450	13.22	.0002	1,578.0504	2,417.3439

ANOVA table

Source	SS	df	MS	F	p-value
Regression		1	6,983,889,280.5	174.69	.0002
6,983	889,280.5		143		
	143				
Residual		4	39,978,439.3714		
159,91	3,757.485				
	7				
Total		5			
7,143	803,038.0				
	000				

	Y'	Residual
1	51,655.571	8,244.4286
2	71,632.543	-4,732.5429
3	91,609.514	-5,139.5143
4	111,586.486	-4,717.4857
5	131,563.457	2,561.5429
6	151,540.429	3,783.5714

	Predicted values				
	Predicted	<u>95% Confia</u>	lence Interval	95% I	Prediction
				<u>In</u>	<u>iterval</u>
1,950.00	Y	lower	upper	lower	upper
2,010.00	171,517	155,175	187,860	147,533	195,502
2,020.00	191,494	171,296	211,693	164,733	218,255
2,030.00	211,471	187,304	235,639	181,601	241,342
2,040.00	231,448	203,245	259,651	198,228	264,669
2,050.00	251,425	219,146	283,704	214,681	288,169
2,060.00	271,402	235,019	307,785	231,006	311,799
2,070.00	291,379	250,874	331,885	247,233	335,525
2,080.00	311,356	266,714	355,998	263,387	359,326
2,090.00	331,333	282,545	380,122	279,482	383,184
3,000.00	2,149,238	1,719,040	2,579,435	1,718,6	2,579,793
				82	
3,010.00	2,169,215	1,734,821	2,603,608	1,734,4	2,603,963
				66	

Exhibit 6A – Population Projection (continued)

Regression analysis

0.992	r ²
0.996	r
1.921	std. error of estimate
6	observations
1	predictor
	variable
Y	dependent variable

				confidence inter	rval
variables	coefficients	std. error	t p-value	95% lower	95% upper
			(df=4)		
intercept	a = 1,411.4035				
X1	b = 49.13793641	2.26634440	21.68 2.68E-05	42.84554257	55.43033025

ANOVA

Source	SS	df	MS	F	p-value
Regression	1,735.2349	1	1,735.2349	470.09 2.	.68E-05
Residual	14.7651	4	3.6913		
Total	1,750.0000	5			
		\ <i>1</i>	Desident		
	.—	Y'	Residual		
	1	1,951.942	-1.9420		
	2	1,957.373	2.6272		
	3	1,969.982	0.0184		
	4	1,980.389	-0.3893		
	5	1,991.552	-1.5519		
	6	1,998.762	1.2376		
D	endiate di value a				
PI	edicted values	OFN Confide		050/ 0	l'atian
	Predicted	<u>95% Confider</u>	<u>ice miervar</u>	<u>95% Prea</u> Interv	
11.0004317	Y	lower	upper	lower	upper
8					

Regression	analysis
regression	unuiyoio

0.992 r²

0.996 r

1.921 std. error of estimate

- 6 observations
- 1 predictor
- variable

Y dependent variable

				confidence inter	rval
variables	coefficients	std. error	t p-value (df=4)	95% lower	95% upper
intercept	a = 1,411.4035				
X1	b = 49.13793641	2.26634440	21.68 2.68E-05	42.84554257	55.43033025

ANOVA

table				
Source	SS	df	MS	F p-value
Regression	1,735.2349	1	1,735.2349	470.09 2.68E-05
Residual	14.7651	4	3.6913	
Total	1,750.0000	5		

Exhibit 6A – Population Projection (continued)

		Y'	Residual				
	1	1,951.942	-1.9420				
		1,957.373	2.6272				
	2						
	3	1,969.982	0.0184				
	4	1,980.389	-0.3893				
	5	1,991.552	-1.5519				
	6	1,998.762	1.2376				
-							
	Predicted values						
	Predicted	95% Confide	ence Interval	<u>95% Pre</u>	<u>ediction</u> rval		
11.0004317	Y	lower	upper	lower	upper		
8							
Regression a	analysis						
	0.992						
	0.996						
		std. error of esti	mate				
		observations					
	1	predictor					
		variable					
	Y	dependent varia	able			.	
variables	coeffici	ionto	std. error	t	p-value	confidence interva 95% lower	I 95% upper
	coenici		Siu. enor	(df=4)	p-value	9070 IOWEI	3078 upper
intercept	a =	-28.3842	0.0000	04.00		0.0170	0.000
		0.0202			2 68 - 05	0.0176	0.0228
	b =	0.0202	0.0009	21.68	2.002 00		
ANOVA able Source Regression	<u>SS</u> 0.7126		<u>MS</u> 0.7126	F	<i>p-value</i> 2.68E-05		
ANOVA able Source Regression Residual	SS 0.7126 0.0061	<u>df</u> 1 4	MS	F	p-value		
ANOVA able <u>Source</u> Regression	<u>SS</u> 0.7126	<i>df</i> 1	<u>MS</u> 0.7126	F	p-value		
ANOVA able Source Regression Residual	SS 0.7126 0.0061	<i>df</i> 1 4 5	<u>MS</u> 0.7126	F	p-value		
ANOVA able Source Regression Residual	SS 0.7126 0.0061 0.7187	df 1 4 5 Y'	<u>MS</u> 0.7126 0.0015 <i>Residual</i>	F	p-value		
ANOVA able Source Regression Residual	<u>SS</u> 0.7126 0.0061 0.7187 1	<u>df</u> 1 4 5 Y' 10.965	<i>MS</i> 0.7126 0.0015 <u><i>Residual</i></u> 0.0352	F	p-value		
ANOVA able Source Regression Residual	SS 0.7126 0.0061 0.7187 1 2	<i>df</i> 1 4 5 Y' 10.965 11.167	<i>MS</i> 0.7126 0.0015 <i>Residual</i> 0.0352 -0.0560	F	p-value		
ANOVA able Source Regression Residual	<u>SS</u> 0.7126 0.0061 0.7187 1	<u>df</u> 1 4 5 Y' 10.965	<i>MS</i> 0.7126 0.0015 <u><i>Residual</i></u> 0.0352	F	p-value		
ANOVA able Source Regression Residual	SS 0.7126 0.0061 0.7187 1 2	<i>df</i> 1 4 5 Y' 10.965 11.167	<i>MS</i> 0.7126 0.0015 <i>Residual</i> 0.0352 -0.0560	F	p-value		
ANOVA able Source Regression Residual	SS 0.7126 0.0061 0.7187 1 2 3	<i>df</i> 1 4 5 <u>Y'</u> 10.965 11.167 11.369	<i>MS</i> 0.7126 0.0015 <i>Residual</i> 0.0352 -0.0560 -0.0012	F	p-value		
ANOVA able Source Regression Residual	SS 0.7126 0.0061 0.7187 1 2 3 4	<i>df</i> 1 4 5 10.965 11.167 11.369 11.571	MS 0.7126 0.0015 <u>Residual</u> 0.0352 -0.0560 -0.0012 0.0088	F	p-value		
ANOVA able Regression Residual Total	SS 0.7126 0.0061 0.7187 1 2 3 4 5 6	<u>df</u> 1 4 5 10.965 11.167 11.369 11.571 11.772	MS 0.7126 0.0015 <u>Residual</u> 0.0352 -0.0560 -0.0012 0.0088 0.0342	F	p-value		
ANOVA able Regression Residual Total	SS 0.7126 0.0061 0.7187 1 2 3 4 5	<u>df</u> 1 4 5 10.965 11.167 11.369 11.571 11.772 11.974	MS 0.7126 0.0015 <u>Residual</u> 0.0352 -0.0560 -0.0012 0.0088 0.0342	F	<i>p-value</i> 2.68E-05		
ANOVA able <u>Source</u> Regression Residual Total	SS 0.7126 0.0061 0.7187 1 2 3 4 5 6 Predicted values	<u>df</u> 1 4 5 10.965 11.167 11.369 11.571 11.772 11.974	MS 0.7126 0.0015	F 470.09	<i>p-value</i> 2.68E-05		
NOVA able <u>Source</u> Regression Residual Total	SS 0.7126 0.0061 0.7187 1 2 3 4 5 6 Predicted values	<i>df</i> 1 4 5 Y' 10.965 11.167 11.369 11.571 11.772 11.974 <u>95% Confide</u>	MS 0.7126 0.0015	F 470.09	p-value 2.68E-05		
NOVA able Source Regression Residual Total	SS 0.7126 0.0061 0.7187 1 2 3 4 5 6 Predicted values Predicted values Predicted values	df 1 4 5 Y' 10.965 11.167 11.369 11.571 11.571 11.772 11.974 <u>95% Confide</u> lower	MS 0.7126 0.0015 <u>Residual</u> 0.0352 -0.0560 -0.0012 0.0088 0.0342 -0.0209 ence Interval upper	F 470.09 95% Pro Inte	p-value 2.68E-05		
NOVA able Source Regression Residual Total	SS 0.7126 0.0061 0.7187 1 2 3 4 5 6 Predicted values Predicted values Predicted values Predicted Values Predicted Values	<u>df</u> 1 4 5 7 10.965 11.167 11.369 11.571 11.772 11.974 <u>95% Confide</u> <u>lower</u> 12.0753	MS 0.7126 0.0015 <u>Residual</u> 0.0352 -0.0560 -0.0012 0.0088 0.0342 -0.0209 <u>ence Interval</u> <u>upper</u> 12.2766	F 470.09 95% Pro Inte Iower 12.0283	p-value 2.68E-05 ediction rval upper 12.3236		
ANOVA able Regression Residual Total - - - - - - - - - - - - - - - - - - -	SS 0.7126 0.0061 0.7187 1 2 3 4 5 6 Predicted values Predicted Values Predicted values Predicted Values Predicted values Predicted values	<u>df</u> 1 4 5 <u>Y'</u> 10.965 11.167 11.369 11.571 11.772 11.974 <u>95% Confide</u> <u>lower</u> 12.0753 12.2534	MS 0.7126 0.0015 <i>Residual</i> 0.0352 -0.0560 -0.0012 0.0088 0.0342 -0.0209 ence Interval ence Interval 12.2766 12.5021	F 470.09 95% Pro Inte Iower 12.0283 12.2130	<u>p-value</u> 2.68E-05 <u>2.68E-05</u> <u>2.68E-05</u> <u>12.3236</u> 12.3236 12.5425	194,065.9429 237,457.7516	
ANOVA able Source Regression Residual Total 1,950.00 2,010.00 2,020.00 2,030.00	SS 0.7126 0.0061 0.7187 1 2 3 4 5 6 <i>Predicted values</i> <i>Predicted values</i>	<u>df</u> 1 4 5 <u>Y'</u> 10.965 11.167 11.369 11.571 11.772 11.974 <u>95% Confide</u> <u>lower</u> 12.0753 12.2534 12.4307	<u>MS</u> 0.7126 0.0015 <u>Residual</u> 0.0352 -0.0560 -0.0012 0.0088 0.0342 -0.0209 <u>ence Interval</u> <u>upper</u> 12.2766 12.5021 12.7284	F 470.09 95% Pro <u>Inte</u> lower 12.0283 12.2130 12.3956	<i>p-value</i> 2.68E-05 <i>2.68E-05</i> <i>2.68E-05</i> <i>2.68E-05</i> <i>12.5425</i> <i>12.5425</i> <i>12.7635</i>	194,065.9429 237,457.7516 290,551.6698	
ANOVA able <u>Source</u> Regression Residual Total <u>1,950.00</u> 2,010.00 2,020.00 2,020.00 2,030.00 2,040.00	SS 0.7126 0.0061 0.7187 1 2 3 4 5 6 <i>Predicted values</i> <i>Predicted values</i>	<u>df</u> 1 4 5 <u>Y'</u> 10.965 11.167 11.369 11.571 11.772 11.974 <u>95% Confide</u> <u>lower</u> 12.0753 12.2534 12.4307 12.6077	<u>MS</u> 0.7126 0.0015 <u>Residual</u> 0.0352 -0.0560 -0.0012 0.0088 0.0342 -0.0209 ence Interval upper 12.2766 12.5021 12.7284 12.9550	F 470.09 95% Pro Inte lower 12.0283 12.2130 12.3956 12.5768	<i>p-value</i> 2.68E-05 2.68E-05 2.68E-05 12.5425 12.3236 12.5425 12.7635 12.9859	194,065.9429 237,457.7516 290,551.6698 355,517.0227	
ANOVA able Source Regression Residual Total - - - - - - - - - - - - - - - - - - -	SS 0.7126 0.0061 0.7187 1 2 3 4 5 6 <i>Predicted values</i> <i>Predicted values</i> <i>Predicted</i> 12.1760 12.3777 12.5795 12.7813 12.9831	<u>df</u> 1 4 5 10.965 11.167 11.369 11.571 11.772 11.974 <u>95% Confide</u> <u>lower</u> 12.0753 12.2534 12.4307 12.6077 12.7844	<u>MS</u> 0.7126 0.0015 <u>Residual</u> 0.0352 -0.0560 -0.0012 0.0088 0.0342 -0.0209 <u>ence Interval</u> <u>upper</u> 12.2766 12.5021 12.7284 12.9550 13.1819	F 470.09 95% Pro Inte Iower 12.0283 12.2130 12.3956 12.5768 12.7569	<i>p-value</i> 2.68E-05 2.68E-05 2.68E-05 12.12 12.3236 12.5425 12.7635 12.9859 13.2094	194,065.9429 237,457,7516 290,551.6698 355,517.0227 435,008.1811	
ANOVA able <u>Source</u> Regression Residual Total <u>1,950.00</u> 2,010.00 2,020.00 2,030.00 2,030.00 2,040.00 2,050.00 2,060.00	SS 0.7126 0.0061 0.7187 1 2 3 4 5 6 <i>Predicted values</i> <i>Predicted</i> <i>Predicted</i> <i>Y</i> 12.1760 12.3777 12.5795 12.7813 12.9831 13.1849	<u>df</u> 1 4 5 10.965 11.167 11.369 11.571 11.772 11.974 <u>95% Confide</u> <u>lower</u> 12.0753 12.2534 12.4307 12.6077 12.6077 12.7844 12.9609	<u>MS</u> 0.7126 0.0015 <u>Residual</u> 0.0352 -0.0560 -0.0012 0.0088 0.0342 -0.0209 <u>ence Interval</u> <u>upper</u> 12.2766 12.5021 12.7284 12.9550 13.1819 13.4089	F 470.09 470.09 95% Pro Inte lower 12.0283 12.2130 12.3956 12.5768 12.5768 12.7569 12.9362	<i>p-value</i> 2.68E-05 2.68E-05 2.68E-05 12.5425 12.7635 12.7635 12.9859 13.2094 13.4337	194,065.9429 237,457.7516 290,551.6698 355,517.0227 435,008.1811 532,273.0153	
ANOVA able Regression Residual Total - - - - - - - - - - - - - - - - - - -	SS 0.7126 0.0061 0.7187 1 2 3 4 5 6 <i>Predicted values</i> <i>Predicted values</i> <i>Predicted values</i> <i>Predicted values</i> <i>Predicted values</i> <i>Predicted values</i> <i>Predicted values</i> <i>Predicted values</i> <i>Predicted values</i> <i>Predicted values</i> <i>12.1760</i> 12.3777 12.5795 12.7813 12.9831 13.1849 13.3867	<i>df</i> 1 4 5 <i>Y'</i> 10.965 11.167 11.369 11.571 11.772 11.974 <i>95% Confide</i> <i>lower</i> 12.0753 12.2534 12.4307 12.6077 12.6077 12.7844 12.9609 13.1373	MS 0.7126 0.0015 <u>Residual</u> 0.0352 -0.0560 -0.0012 0.0088 0.0342 -0.0209 ence Interval 12.2766 12.5021 12.7284 12.9550 13.1819 13.4089 13.6361	F 470.09 470.09 <u>95% Pro Inte</u> Iower 12.0283 12.2130 12.3956 12.5768 12.7569 12.9362 13.1149	<i>p-value</i> 2.68E-05 2.68E-05 2.68E-05 12.5425 12.5425 12.9859 13.2094 13.4337 13.6585	194,065.9429 237,457.7516 290,551.6698 355,517.0227 435,008.1811 532,273.0153 651,285.5966	
ANOVA able <u>Source</u> Regression Residual Total <u>1,950.00</u> 2,010.00 2,020.00 2,030.00 2,040.00 2,050.00 2,060.00 2,070.00 2,070.00 2,080.00	SS 0.7126 0.0061 0.7187 1 2 3 4 4 5 6 <i>Predicted values Predicted</i> 12.1760 12.3777 12.5795 12.7813 12.9831 13.1849 13.3867 13.5885	<i>df</i> 1 4 5 <i>Y'</i> 10.965 11.167 11.369 11.571 11.772 11.974 <i>95% Confide</i> <i>lower</i> 12.0753 12.2534 12.4307 12.6077 12.7844 12.9609 13.1373 13.3136	MS 0.7126 0.0015 <u>Residual</u> 0.0352 -0.0560 -0.0012 0.0088 0.0342 -0.0209 ence Interval 12.2766 12.5021 12.7284 12.9550 13.1819 13.4089 13.6361 13.8634	F 470.09 470.09 <u>95% Pro Inte</u> Iower 12.0283 12.2130 12.3956 12.5768 12.7569 12.9362 13.1149 13.2931	<i>p-value</i> 2.68E-05 2.68E-05 2.68E-05 2.68E-05 12.5425 12.3236 12.5425 12.7635 12.7635 12.9859 13.2094 13.4337 13.6585 13.8839	194,065.9429 237,457.7516 290,551.6698 355,517.0227 435,008.1811 532,273.0153 651,285.5966 796,908.5718	
ANOVA able Source Regression Residual Total 1,950.00 2,010.00 2,020.00 2,020.00 2,020.00 2,030.00 2,040.00 2,050.00 2,050.00 2,050.00 2,070.00 2,070.00 2,080.00 2,090.00	SS 0.7126 0.0061 0.7187 1 2 3 4 5 6 <i>Predicted values Predicted</i> 12.1760 12.3777 12.5795 12.7813 12.9831 13.1849 13.3865 13.7903	<i>df</i> 1 4 5 <i>Y'</i> 10.965 11.167 11.369 11.571 11.772 11.974 <i>95% Confide</i> <i>lower</i> 12.0753 12.2534 12.4307 12.6077 12.7844 12.9609 13.1373 13.3136 13.4899	MS 0.7126 0.0015 <u>Residual</u> 0.0352 -0.0560 -0.0012 0.0088 0.0342 -0.0209 <u>ence Interval</u> 12.2766 12.5021 12.7284 12.9550 13.1819 13.4089 13.6361 13.8634 14.0907	F 470.09 470.09 95% Pro Inte Iower 12.0283 12.2130 12.3956 12.5768 12.7569 12.9362 13.1149 13.2931 13.4710	<i>p-value</i> 2.68E-05 2.68E-05 2.68E-05 2.68E-05 12.5425 12.5425 12.7635 12.5425 12.7635 12.9859 13.2094 13.4337 13.6585 13.8839 14.1096	194,065.9429 237,457.7516 290,551.6698 355,517.0227 435,008.1811 532,273.0153 651,285.5966 796,908.5718 975,091.8415	
ANOVA able Source Regression Residual Total 1,950.00 2,010.00 2,020.00 2,030.00 2,040.00 2,050.00 2,060.00 2,070.00 2,080.00	SS 0.7126 0.0061 0.7187 1 2 3 4 4 5 6 <i>Predicted values Predicted</i> 12.1760 12.3777 12.5795 12.7813 12.9831 13.1849 13.3867 13.5885	<i>df</i> 1 4 5 <i>Y'</i> 10.965 11.167 11.369 11.571 11.772 11.974 <i>95% Confide</i> <i>lower</i> 12.0753 12.2534 12.4307 12.6077 12.7844 12.9609 13.1373 13.3136	MS 0.7126 0.0015 <u>Residual</u> 0.0352 -0.0560 -0.0012 0.0088 0.0342 -0.0209 ence Interval 12.2766 12.5021 12.7284 12.9550 13.1819 13.4089 13.6361 13.8634	F 470.09 470.09 95% Pro Inte Iower 12.0283 12.2130 12.3956 12.5768 12.7569 12.9362 13.1149 13.2931 13.4710	<i>p-value</i> 2.68E-05 2.68E-05 2.68E-05 2.68E-05 12.5425 12.5425 12.7635 12.5425 12.7635 12.9859 13.2094 13.4337 13.6585 13.8839 14.1096	194,065.9429 237,457.7516 290,551.6698 355,517.0227 435,008.1811 532,273.0153 651,285.5966 796,908.5718	

Exhibit 6A – Population Projection (continued)

Regression analysis

0.992	r ²
0.996	r
0.039	std. error of estimate
6	observations
1	predictor variable
1	variable
Y	dependent variable

						confidence interval	
variables	coefficient	s	std. error	t (df=4)	p-value	95% lower	95% upper
intercept	a =	-28.3842					
X1	b =	0.0202	0.0009	21.68	2.68E-05	0.0176	0.0228

ANOVA table

lable				
Source	SS	df	MS	F p-value
Regression	0.7126	1	0.7126	470.09 2.68E-05
Residual	0.0061	4	0.0015	
Total	0.7187	5		

	Y'	Residual
1	10.965	0.0352
2	11.167	-0.0560
3	11.369	-0.0012
4	11.571	0.0088
5	11.772	0.0342
6	11.974	-0.0209

F	Predicted values				
	Predicted	95% Confiden	<u>ce Interval</u>	<u>95% Pre</u> Inte	
1,950.00	Y	lower	upper	lower	upper
2,010.00	12.1760	12.0753	12.2766	12.0283	12.3236
2,020.00	12.3777	12.2534	12.5021	12.2130	12.5425
2,030.00	12.5795	12.4307	12.7284	12.3956	12.7635
2,040.00	12.7813	12.6077	12.9550	12.5768	12.9859
2,050.00	12.9831	12.7844	13.1819	12.7569	13.2094
2,060.00	13.1849	12.9609	13.4089	12.9362	13.4337
2,070.00	13.3867	13.1373	13.6361	13.1149	13.6585
2,080.00	13.5885	13.3136	13.8634	13.2931	13.8839
2,090.00	13.7903	13.4899	14.0907	13.4710	14.1096
3,000.00	32.1533	29.5043	34.8024	29.5021	34.8046
3,010.00	32.3551	29.6803	35.0300	29.6781	35.0322

Exhibit 6A - Population Projection (continued)

Regression analysis

					confidence interva	al
variables	coefficients		std. error	t p-value	95% lower	95% upper
				(df=4)		
intercept	a = -2	28.3842				
X1	b =	0.0202	0.0009	21.68 2.68E-05	0.0176	0.0228

ANOVA table

lable				
Source	SS	df	MS	F p-value
Regression	0.7126	1	0.7126	470.09 2.68E-05
Residual	0.0061	4	0.0015	
Total	0.7187	5		

	Predicted values						
	Predicted	95% Confiden	<u>ce Interval</u>	<u>95% Pre</u>	ediction		
				Inte	<u>rval</u>		
1,950.00) Y	lower	upper	lower	upper		
2,010.00	12.1760	12.0753	12.2766	12.0283	12.3236	194,066	175,487
2,020.00	12.3777	12.2534	12.5021	12.2130	12.5425	237,458	209,687
2,030.00	12.5795	12.4307	12.7284	12.3956	12.7635	290,552	250,376
2,040.00	12.7813	12.6077	12.9550	12.5768	12.9859	355,517	298,840
2,050.00	12.9831	12.7844	13.1819	12.7569	13.2094	435,008	356,595
2,060.00	13.1849	12.9609	13.4089	12.9362	13.4337	532,273	425,439
2,070.00	13.3867	13.1373	13.6361	13.1149	13.6585	651,286	507,516
2,080.00	13.5885	13.3136	13.8634	13.2931	13.8839	796,909	605,375
2,090.00	13.7903	13.4899	14.0907	13.4710	14.1096	975,092	722,058
3,000.00	32.1533	29.5043	34.8024	29.5021	34.8046	92,048,083,836,674	6,509,637,564,379
3,010.00	32.3551	29.6803	35.0300	29.6781	35.0322	112,629,401,605,358	7,761,987,762,540

									T			ов – Рорија	tion Growth	Table	r						1			
DOD Facility	Tract	Location	Group	RES2000	Armed Forces	%Armed Forces	RES2001	RES2010	RES2015	RES2020	RES2050	RES2100	EMP2000	EMP2005	EMP2010	EMP2015	EMP2020	EMP2050	EMP2100	RES/EMP/ HOTEL Growth	HOTEL POP2	RESCAP	EMPCAP	HOTEL CAP
Andersen	950100	Yigo	1	558	277	50%	601	732	771	1314	1382	1511	0	0	0	0	0	0	0	1.27	0	19,275	38550	0
Andersen	950100	Yigo	2	361	345	96%	389	419	445	972	1016	1100	1,086	1,170	1,260	1,338	1,420	1,554	1,805	1.27	0	2,785	3639	0
Andersen	950100	Yigo	3	696	189	27%	750	808	857	1434	1520	1,681	0	0	0	0	0	0	0	1.27	0	7,931	9451	0
Andersen	950100	Yigo	4	624	145	23%	672	724	769	816	893	1,037	0	0	0	0	0	0	0	1.27	0	1,036	1091	0
Andersen	950100	Yigo	5	627	167	27%	627	627	627	627	627	627	82	88	95	101	107	117	136	1.27	0	304	608	0
Andersen	950200	Yigo	1	78	16	21%	84	91	96	102	112	130	0	0	0	0	0	0	0	1.27	0	595	1190	0
Andersen	950200	Yigo	2	336	102	30%	362	390	414	439	481	558	0	0	0	0	0	0	0	1.27	0	32,081	64162	0
Andersen	950200	Yigo	3	488	122	25%	526	566	601	638	698	811	0	0	0	0	0	0	0	1.27	0	3,000	4139	0
Andersen	950200	Yigo	4	710	207	29%	710	710	710	710	710	710	0	0	0	0	0	0	0	1.27	0	477	955	0
Andy South	951200	Dededo	1	0	0	0%	0	0	0	0	0	0	0	0	0	0	0	0	0	1.27	0	10,067	10884	0
Andy South	951300	Mangilao	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.27	0	220	440	0
Andy South	951300	Mangilao	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.27	0	1,204	1688	0
Andy South Andy South	955500 955500	Yigo Yigo	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.27 1.27	0	6,958 1,504	7296 3008	0
Army Natn'l	951600	Barrigada	1	0	0	0	0	0	0	0	0	0	66	71	77	81	86	94	110	1.27	0	8,030	15711	0
Army Natn'l	951600	Barrigada	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.27	0	1,724	3447	0
Naval Magazine	954100	Santa Rita	1	0			0	0	0	0	0	0	0	0	0	0	0	0	0	1.27	0	21,496	42992	0
Naval Magazine	954900	Santa Rita	1	0			0	0	0	0	0	0	0	0	0	0	0	0	0	1.27	0	22,535	30780	0
Naval Magazine	955000	Talofofo	1	0			0	0	0	0	0	0	0	0	0	0	0	0	0	1.27	0	8,940	13461	0
Naval Station	954500	Santa Rita	1	199	99	0	214	231	245	260	285	331	1,954	2,105	2,268	2,407	2,555	2,795	3,247	1.27	0	5,087	10174	0
Naval Station Naval Station	954500	Santa Rita Santa Rita	2	881	308 391	0	949 2,361	1,022	1,085 1,670	1,152 1,773	1,260 1,940	1,464 2,253	0	0	0	0	0	0	0	1.27 1.27	0 297	5,358 2,916	10716 5833	0 600
Naval Station	954500 954500	Santa Rita	4	331	331	0	357	384	408	433	474	550	522	562	606	643	683	747	867	1.27	0	2,910	5506	0
NCTAMS	950300	Dededo	1	10	10	100%	11	12	12	13	14	17	0	0	0	0	0	0	0	1.27	0	16,932	33864	0
NCTAMS	950300	Dededo	2	0	0	0%	0	0	0	0	0	0	0	0	0	0	0	0	0	1.27	0	2,827	31589	0
NCTAMS	950300	Dededo	3	213	58	27%	229	247	262	279	305	354	0	0	0	0	0	0	0	1.27	0	4,655	9309	0
NCTAMS	950300	Dededo	4	247	176	71%	266	287	304	323	353	410	0	0	0	0	0	0	0	1.27	0	6,477	12953	0
NCTAMS NCTAMS	950300 950300	Dededo Dededo	5	7 513	0 92	0%	8 553	8 595	9 632	9 671	10 734	12 852	0	0	0	0	0	0	0	1.27 1.27	0	4,410 3,002	8820 6004	0
NCTAMS	950300	Dededo	7	588	117	20%	588	588	588	588	588	588	0 U	0	0	0	0	0	0	1.27	0 Ŭ	221	442	1280
NCTAMS	950300	Dededo	8	128	19	15%	138	149	158	167	183	213	0	0	0	0	0	0	0	1.27	0	422	843	0
NCTAMS	950300	Dededo	9	53	0	0%	57	62	65	69	76	88	0	0	0	0	0	0	0	1.27	0	7,470	12389	0
Nimitz Hill Annex TOTALS	953800	Asan	1	44 9048	9 3180	0 35%	47 10499	51 10277	54 10782	58 12847	63 13724	73 15370	323 4033	348 4344.714	375 4680.604	398 4968.089	422 5273.342	462 5769.322	537 6701.598	1.27 41.93787	0 297	4,471 217160.2	8032 409965.4	0 1880
	950400	Dededo	1	4,180		_	4,503	4,851	5,149	5,466	6,556	7,522	0	0	0	0	0	0	0	1.27	0	16,155	16649	0
	950400 950400	Dededo Dededo	2	963			1,037 1,993	1,118	1,186	1,259 1,993	1,378 1,993	1,600 1,993	81 0	87 0	94 0	100 0	106	116 0	135 0	1.27 1.27	146	1,282	1413 1300	300
	950400	Dededo	4	1,944			2,094	2,256	2,395	2,542	2,781	3,230	0	0	0	0	0	0	0	1.27	0	2,122	2304	0
	950500	Yigo	1				1,084	1,168	1,239	1,315	1,439	1,672	0	0	0	0	0	0	0	1.27	0	4,245	4630	0
	950500	Yigo	2	873			940	1,797	1,859	1,926	2,033	2,235	0	0	0	0	0	0	0	1.27	0	12,065	13761	0
	950500	Yigo	3	1,263			1,361	1,466	1,556	1,651	2,215	2,507	0	0	0	0	0	0	0	1.27	0	6,788	7177	0
	950500 950500	Yigo Yigo	4	2,717			2,927	3,153	3,347	3,553 1,472	3,887 1,611	4,515	243 217	262 234	283 252	300 267	318 284	348 310	405 361	1.27	0	4,801	5051 1324	0
	950600	Yigo	1	1,120			1,213	1,729	1,813	1,472	2,048	2,322	0	0	0	0	0	0	0	1.27	0	33,798	33545	0
	950600	Yigo	2	2,092			2,254	2,428	2,577	2,735	2,993	3,476	0	0	0	0	0	0	0	1.27	0	8,878	9976	0
	950600	Yigo	3	437			471	507	538	571	625	726	0	0	0	0	0	0	0	1.27	0	1,652	3063	0
	950600	Yigo	4	1,468			1,581	1,704	1,808	1,920	2,100	2,439	202	217	234	249	264	289	335	1.27	0	5,014	6112	0
	950600 950600	Yigo Yigo	5 6	2,227 604			2,399 651	2,585 701	2,743 744	2,912 790	3,186 864	3,700 1,004	352 27	379 29	408 31	433 33	460 35	503 39	584 45	1.27 1.27	0	5,412 3,742	5845 3743	0
	950700	Dededo	1	2,113			2,276	2,452	2,603	2,763	3,023	3,511	0	0	0	0	0	0	0	1.27	0	15,094	16698	0
	950700	Dededo	2	943			1,016	1,094	1,162	1,233	1,349	1,567	0	0	0	0	0	0	0	1.27	0	4,321	4682	0
	950700	Dededo	3	546			546	546	546	546	546	546	0	0	0	0	0	0	0	1.27	0	215	240	0
	950700	Dededo	4	1,429			1,539	2,442	2,544	2,653	2,828	3,159	0	0	0	0	0	0	0	1.27	0	2,045	2169	0
	950700 950700	Dededo Dededo	5	655 567			706 567	760	807 567	856 567	937 567	1,088 567	0	0	0	0	0	0	0	1.27	0	4,557 349	4775	0
	950700	Dededo	7	479			479	479	479	479	479	479	0	0	0	0	0	0	0	1.27	0	477	295	0
	950700	Dededo	8	1,022			1,022	1,022	1,022	1,022	1,022	1,022	92	99	107	113	120	132	153	1.27	0	210	420	0
	950700	Dededo	9	861			861	861	861	861	861	861	0	0	0	0	0	0	0	1.27	0	631	422	0
	950800	Dededo	1	2,007		1	2,162	2,329	2,472	2,624	2,871	3,335	0	0	0	0	0	0	0	1.27	0	6,530	7100	0

DOD Facility	Tract	Location	Group	RES2000	Armed Forces	%Armed Forces	RES2001	RES2010	RES2015	RES2020	RES2050	RES2100	EMP2000	EMP2005	EMP2010	EMP2015	EMP2020	EMP2050	EMP2100	RES/EMP/ HOTEL Growth	HOTEL POP2	RESCAP	EMPCAP	HOTEL CAP
	950800	Dededo	2	1,256			1,353	1,458	1,547	1,642	1,797	2,087	0	0	0	0	0	0	0	1.27	0	1,398	1576	0
	950800	Dededo	3	1,139			1,227	1,322	1,403	1,489	1,629	1,893	0	0	0	0	0	0	0	1.27	0	7,218	8136	0
	950800 950800	Dededo Dededo	4	1,414 1,179			1,523 1,270	1,641	1,742 1,452	1,849 1,542	2,023	2,350 1,959	0	0	0	0	0	0	0	1.27 1.27	0	2,800 2,201	2281 1831	0
	950800	Dededo	6	647			697	751	797	846	926	1,075	0	0	0	0	0	0	0	1.27	0	999	658	0
	950800	Dededo	7	654			705	759	806	855	936	1,087	125	135	145	154	163	179	208	1.27	0	2,302	1303	0
	950900	Dededo	1	880			880	880	880	880	880	880	1,777	1,914	2,062	2,189	2,323	2,542	2,952	1.27	0	654	2688	0
	950900	Dededo	2	721			721	721	721	721	721	721	0	0	0	0	0	0	0 68	1.27	0	628	357	0
	950900 950900	Dededo Dededo	3	839 1,391		_	839 1,591	839	839 1,391	839 1,391	839 1,391	839 1,391	41 0	44 0	47	50 0	53 0	58 0	0	1.27 1.27	0	753 1,284	591 738	0
	950900	Dededo	5	2,507			2,701	2,909	3,088	3,278	3,586	4,166	613	660	711	755	801	877	1,018	1.27	135	3,781	3137	270
	951000	Dededo	1	666			666	666	666	666	666	666	0	0	0	0	0	0	0	1.27	0	657	385	0
	951000	Dededo	1	492			492	492	492	492	492	492	0	0	0	0	0	0	0	1.27	0	411	251	0
	951000	Dededo	3	414		-	446	480	510	541	592	688	116	125	135	143	152	166	193	1.27	0	437	275	0
	951000	Dededo	4	463			463	463	463	463	463	463	41	44	47	50	53	58	68	1.27	0	373	311	0
	951000 951100	Dededo Dededo	5	564 2,978		-	608 3,208	655 3,456	695 3,668	737 3,894	807 4,260	937 4,948	714 694	769 748	829 806	879 855	934 908	1,021 993	1,186 1,154	1.27 1.27	0	1,015 5,578	1005 5261	0
	951100	Dededo	2	2,484			2,676	2,883	3,060	3,248	3,553	4,348	2,287	2,464	2,655	2,818	2,991	3,272	3,801	1.27	0	7,398	10415	0
	951100	Dededo	3	831			895	964	1,024	1,087	1,189	1,381	0	0	0	0	0	0	0	1.27	0	1,449	1509	0
	951300	Mangilao	3	15	0	0	16	17	18	20	21	25	0	0	0	0	0	0	0	1.27	0	962	1153	0
	951400	Mangilao	1	1,832			1,974	2,126	2,257	2,395	2,621	3,044	0	0	0	0	0	0	0	1.27	0	4,175	3869	0
	951400	Mangilao	2	1,201			1,294	1,394	1,479	1,570	1,718	1,996	0	0	0	0	0	0	0	1.27	0	2,586	1031	0
	951400 951400	Mangilao Mangilao	3	914 1,516			985 1,633	1,061	1,126 1,868	1,195 1,982	1,307 2,169	1,519 2,519	0	0	0	0	0	0	0	1.27 1.27	0	5,092 18,131	3943 19052	0
	951400	Mangilao	1	29			31	34	36	38	41	48	0	0	0	0	0	0	0	1.27	0	2,779	5559	0
	951700	Barrigada	1	1,114			1,200	1,293	1,372	1,457	1,594	1,851	0	0	0	0	0	0	0	1.27	0	4,484	4698	0
	951700	Barrigada	2	590			636	685	727	771	844	980	0	0	0	0	0	0	0	1.27	0	1,633	505	0
	951700	Barrigada	3	515			555	598	634	673	737	856	0	0	0	0	0	0	0	1.27	0	2,446	1762	0
	951800	Barrigada	1	12			13	14	15	16	17	20	1,936	2,085	2,246	2,384	2,531	2,769	3,216	1.27	0	7,488	23601	0
	951800 951800	Barrigada Barrigada	2	7			8	8	9 0	9	10 0	12 0	184 337	198 363	214 391	227 415	241 441	263 482	306 560	1.27 1.27	0	283 264	566 528	0
	951900	Tamuning	1	68			73	79	84	89	97	113	294	317	341	362	384	421	489	1.27	1890	3,239	4618	300
	951900	Tamuning	2	375			404	435	462	490	536	623	6,825	7,353	7,921	8,408	8,925	9,764	11,342	1.27	10985	2,402	23564	16000
	951900	Tamuning	3	792			792	792	792	792	792	792	1,868	2,013	2,168	2,302	2,443	2,673	3,105	1.27	515	683	9281	1000
	951900	Tamuning	4	1,920			2,068	2,228	2,365	2,511	2,895	3,338	585	630	679	721	765	837	972	1.27	290	3,261	2776	600
	951900	Tamuning	5	878			946	1,019	1,082	1,148	1,256	1,459	741	798	860	912	968	1,059	1,231	1.27	0	2,249	1768	0
	951900 951900	Tamuning Tamuning	6	1,086 1,236			1,145 1,236	1,086	1,086 1,236	1,086 1,236	1,086 1,236	1,086 1,236	104 8,431	112 9,082	121 9,784	128 10,385	136	149 12,060	173 14,009	1.27 1.27	0 290	1,009 998	1163 44757	0 600
	951900	Tamuning	8	280			280	280	280	280	280	280	142	153	165	175	186	203	236	1.27	0	94	1193	0
	951900	Tamuning	9	544			544	544	544	544	544	544	936	1,008	1,086	1,153	1,223	1,338	1,555	1.27	1215	435	5494	2500
	952000	Tamuning	1	852			918	989	1,050	1,114	1,219	1,416	1,381	1,487	1,602	1,701	1,805	1,975	2,294	1.27	0	4,617	4000	0
	952000	Tamuning	2	479			516	556	590	626	685	796	0	0	0	0	0	0	0	1.27	0	1,397	704	0
	952000 952100	Tamuning Tamuning	3	450 435			485 469	634 505	666 536	700 569	756 622	860 723	9 222	10 240	11 258	12 274	12 291	14 318	16 370	1.27 1.27	0 927	620 790	416 634	0 1800
	952100	Tamuning	2	267			288	310	329	349	382	444	47	51	55	58	62	68	79	1.27	0	840	605	0
	952100	Tamuning	3	354			381	411	436	463	826	908	352	380	409	434	461	504	585	1.27	310	1,103	2336	600
	952200	Tamuning	1	894			894	894	894	894	894	894	140	150	162	172	183	200	232	1.27	45	592	1254	100
	952200	Tamuning	2	1,087			1,171	1,262	1,339	1,421	1,555	1,806	376	405	436	463	492	538	625	1.27	1276	1,633	616	2500
	952200	Tamuning	3	829			829	829	829	829	829	829	0	0	0	0	0	0	0	1.27	0	774	218	0
	952200	Tamuning	4	1,075 874			1,158 942	1,248	1,324 1,077	1,406 1,143	1,538	1,786 1,452	1,349 412	1,454 444	1,566	1,662 507	1,764	1,930 589	2,242 685	1.27 1.27	0 365	1,893 4,615	5515 3274	0 840
	952300 952300	Tamuning Tamuning	2	1,235			1,330	1,014	1,665	1,143	1,250	2,196	276	298	478	340	539 361	395	459	1.27	146	3,842	2309	300
	952300	Tamuning	3	586			586	586	586	586	586	586	958	1,032	1,112	1,180	1,253	1,370	1,592	1.27	108	486	6272	200
	952400	Tamuning	1	899			968	1,043	1,107	1,176	1,286	1,494	1,422	1,532	1,650	1,752	1,859	2,034	2,363	1.27	90	941	9302	180
	952400	Tamuning	2	517			557	600	637	676	740	859	737	794	855	907	963	1,054	1,224	1.27	194	1,223	6020	400
	952500	Mongmong	1	0			0	0	0	0	0	0	0	0	0	0	0	0	0	1.27	0	868	1737	0
	952600 952600	Mongmong Mongmong	1	459 478			494 515	533	565 589	600 625	657 684	763 794	0 443	0 477	0 514	0 546	0 579	0 634	0 736	1.27 1.27	0 68	975 1,579	269 1694	0 140
	952600	Mongmong	3	1,107	<u> </u>		1,193	1,285	1,364	1,447	1,584	1,839	58	62	67	71	76	83	96	1.27	0	4,661	2723	0
	952700	Barrigada	1	421			421	421	421	421	421	421	62	67	72	77	81	89	103	1.27	0	297	1239	0
	952700	Barrigada	2	597			643	693	735	781	854	992	53	57	61	65	69	75	87	1.27	0	805	1326	0
	952700	Barrigada	3	1,211			1,305	1,405	1,492	1,583	1,732	2,012	0	0	0	0	0	0	0	1.27	0	3,904	2447	0
	952700	Barrigada	4	828			892	961	1,020	1,083	1,184	1,376	131	141	152	161	171	187	217	1.27	149	2,819	2522	760
	952700 952700	Barrigada Barrigada	5	808			870 1,185	938	995 1,355	1,057 1,438	1,156	1,343 1,828	0	0	0	0	0	0	0	1.27 1.27	0	3,390 2,490	1951 1440	0
	952800	Mangilao	1	0			0	0	0	0	0	0	0	0	0	0	0	0	0	1.27	0	510	871	0
	952800	Mangilao	2	8			9	9	10	10	11	13	0	0	0	0	0	0	0	1.27	0	2,111	4222	0
	952900	Mangilao	1	539			581	626	664	705	771	896	79	85	92	97	103	113	131	1.27	0	1,127	693	0
	952900	Mangilao	2	806			868	935	993	1,054	1,153	1,339	217	234	252	267	284	310	361	1.27	270	4,984	3837	500
	952900	Mangilao	3	1,642			1,769	1,906	2,023	2,147	2,349	2,728	715	770	829	880	934	1,022	1,187	1.27	0	7,368	6236	0
	952900	Mangilao	4	1,812			1,952	2,103	2,232	2,369	2,592	3,011	348	375	404	429	455	498	578	1.27	500	10,966	17668	1000
	953000 953000	Mangilao	1	1,680 1,315			2,210 1,417	1,950	2,070	2,197 1,719	2,403 2,361	2,792 2,665	19 19	20 20	22	23 23	25 25	27 27	32 32	1.27 1.27	0	2,850 4,720	1775 3395	0
	953000	Mangilao Mangilao	3	4			4	1,526	1,620	5	6	2,005	1,365	1,471	1,585	1,682	1,785	1,953	2,269	1.27	0	4,720	3536	0

Vol I Chapter 6 Population & Land Use Forecast

cility	Tract	Location	Group	RES2000	Armed Forces	%Armed Forces	RES2001	RES2010	RES2015	RES2020	RES2050	RES2100	EMP2000	EMP2005	EMP2010	EMP2015	EMP2020	EMP2050	EMP2100	RES/EMP/ HOTEL Growth	HOTEL POP2	RESCAP	EMPCAP	HOT CA
	953100	Ordot	1	208			224	241	256	272	298	346	0	0	0	0	0	0	0	1.27	0	4,183	4315	0
	953100	Ordot	2	1,951			2,102	2,264	2,403	2,551	2,791	3,242	12	13	14	15	16	17	20	1.27	0	4,444	4588	0
	953100	Ordot	3	1,098			1,183	1,434	1,513	1,596	1,731	1,984	245	264	284	302	320	351	407	1.27	0	12,293	11421	0
	953100 953100	Ordot Ordot	4	545 185			587 199	964 215	1003 228	1045 242	1045 265	1238 307	104 30	112 33	120 35	128 38	135 40	148 44	172 51	1.27	0	2,917 8,691	2998 7636	0
	953100	Ordot	6	962			1,036	1,116	1,185	1,258	1,376	1,599	0	0	0	0	0	0	0	1.27	0	4,240	3820	0
	953100	Ordot	7	974		<u> </u>	1,049	1,130	1,200	1,274	2,009	2,234	43	46	50	53	56	61	71	1.27	0	4,741	4276	0
9	953200	Sinajana	1	752			810	873	926	983	1,076	1,250	74	80	86	92	97	106	124	1.27	0	3,391	4228	0
	953200	Sinajana	2	286			308	332	352	374	409	475	99	107	115	122	130	142	165	1.27	0	1,181	628	(
	953200	Sinajana	3	774			834	898	953	1,012	1,107	1,286	0	0	0	0	0	0	0	1.27	0	1,225	600	
i	953200	Sinajana	4	1,041			1,121	1,208	1,282	1,361	1,489	1,730	47	51	55	58	62	68	79	1.27	0	1,237	1310	3
	953300 953300	Mongmong Mongmong	1 2	494 969		-	532 1,044	573 1,125	609 1,194	646 1,267	707	821 1,610	53 107	57 115	62 124	65 132	69 140	76 153	88 178	1.27	176 0	1,815 2,085	850 2320	-
	953300	Mongmong	3	945			1,018	1,097	1,164	1,236	1,352	1,570	57	61	66	70	74	81	94	1.27	0	4,182	3850	-
	953300	Mongmong	4	779			839	904	960	1,019	1,114	1,294	153	165	178	189	200	219	255	1.27	0	2,492	2508	
9	953300	Mongmong	5	614			661	713	756	803	878	1,020	47	50	54	57	61	67	78	1.27	0	1,084	873	
1	953400	Agana/Tamu	1	572			616	664	705	748	818	950	2,785	3,000	3,232	3,431	3,641	3,984	4,628	1.27	180	2,109	14907	3
i	953400	Agana/Tamu	2	528			569	613	650	690	755	877	6,094	6,565	7,073	7,507	7,968	8,718	10,126	1.27	0	1,921	5536	
	953500	Agana Heights	1	208 840			224 905	241 975	256	272	298	346	0 102	0	0	0 126	0 133	0 146	0	1.27	0	1,049 1,875	1359 1466	-
	953600 953600	Agana Heights Agana Heights	2	688			741	798	1,035 848	1,098 900	1,202 984	1,396	32	34	37	39	42	46	169 53	1.27	0	1,875	1400	
	953600	Agana Heights	3	847			912	983	1,043	1,108	1,212	1,407	0	0	0	0	0	0	0	1.27	0	2,619	1889	1
	953600	Agana Heights	4	600			646	696	739	785	858	997	8	9	9	10	10	11	13	1.27	0	883	611	+
9	953600	Agana Heights	5	757			816	879	933	990	1,083	1,258	0	0	0	0	0	0	0	1.27	0	1,305	850	
	953700	Asan	1	950			1,023	1,103	1,170	1,242	1,359	1,579	154	166	179	190	201	220	256	1.27	0	5,383	5862	
	953700	Asan	2	1,002		-	1,079	1,163	1,234	1,310	1,433	1,665	0	0	0	0	0	0	0	1.27	0	2,269	4538	
	953700 953900	Asan	3	94			101	109	1556	1563	1574	6191	0	0 78	0 84	0 89	0 94	0 103	0 120	1.27	0	13,669	18148	_
	953900	Yona Yona	1	1,060 552			1,142 595	1,230 641	1,306 680	1,386 722	1,516 790	1,761 917	72 320	344	371	394	418	457	531	1.27	0	5,241 64,290	4682 78155	+
	953900	Yona	3	944			1,017	1,096	1,163	1,234	1,350	1,569	0	0	0	0	0	0	0	1.27	0	4,379	4708	-
	953900	Yona	4	1,138			1,226	1,321	1,402	1,488	1,628	1,891	23	25	27	29	30	33	39	1.27	0	1,255	1190	-
9	953900	Yona	5	681			734	790	839	890	974	1,132	23	25	27	29	30	33	39	1.27	0	9,672	6444	
9	954000	Yona	1	119			128	138	147	156	170	198	0	0	0	0	0	0	0	1.27	0	8,149	8818	
	954000	Yona	2	780			840	905	961	1,020	1,116	1,296	0	0	0	0	0	0	0	1.27	0	20,576	20723	
i	954000	Yona	3	4			4	5	5	5	6	7	0	0	0	0	0	0	0	1.27	0	3,377	5643	_
	954000 954000	Yona Yona	4	59 1,147			64 1,236	68 1,811	73 1,893	77 1,980	84 2,121	98 2,386	0	0	0	0	0	0	0	1.27	0	162 6,771	323 2671	_
	954200	Santa Rita	1	1,147			1,396	1,504	1,595	1,695	1,854	2,380	0	0	0	0	0	0	0	1.27	0	9,472	48633	-
	954200	Santa Rita	2	1,652			1,780	1,917	2,035	2,160	2,363	2,745	171	184	198	211	224	245	284	1.27	0	2,404	7947	1
	954200	Santa Rita	3	614			661	713	756	803	878	1,020	0	0	0	0	0	0	0	1.27	0	1,450	935	
	954200	Santa Rita	4	591			637	686	728	773	845	982	0	0	0	0	0	0	0	1.27	0	1,968	1842	
	954300	Piti	1	822			886	954	1,013	1,075	1,176	1,366	0	0	0	0	0	0	0	1.27	0	6,683	4347	
	954300	Piti	2	222			239	258	273	290	318	369	0	0	0	0	0	0	0	1.27	0	1,193	1007	_
	954300 954400	Piti Piti	3	484 72			521 78	562 84	596 89	633 94	692 103	804 120	82 411	88 443	95 477	101 506	107 537	117 588	136 683	1.27	0	1,827 12,249	1515 23137	_
	954400 954400	Piti	2	66			70	77	81	94 86	94	120	620	668	719	764	811	887	1,030	1.27	0	2,282	91264	-
	954600	Santa Rita	1	193		i	208	224	238	252	276	321	0	0	0	0	0	0	0	1.27	0	1,266	1431	†
	954600	Santa Rita	2	140			151	162	172	183	200	233	0	0	0	0	0	0	0	1.27	0	647	773	-
9	954600	Santa Rita	3	247			266	287	304	323	353	410	14	15	16	17	18	20	23	1.27	0	1,675	3350	
	954700	Agat	1	415			447	482	511	543	594	690	197	213	229	243	258	282	328	1.27	0	1,660	2005	1
	954700	Agat	2	803		ļ	865	932	989	1,050	1,149	1,334	163	176	189	201	213	234	271	1.27	0	2,521	2078	_
	954700 954700	Agat	3	704 770			758 830	817 894	867 949	921 1,007	1,007 1,101	1,170 1,279	193 30	208 33	225 35	238 37	253 40	277 43	321 50	1.27	0	1,595 798	1440 727	
	954700 954800	Agat Agat	4	1,711			1,843	1,986	2,108	2,237	2,448	2,843	0	0	0	0	<u> </u>	<u> </u>	0	1.27	0	3,723	4167	_
	954800 954800	Agat	2	1,253			1,350	1,900	1,544	1,638	1,792	2,043	46	49	53	56	60	65	76	1.27	0	33,665	27915	+
	955100	Talofofo	1	845			910	981	1,041	1,105	1,209	1,404	51	55	59	63	67	73	85	1.27	0	8,334	7403	1
i	955100	Talofofo	2	967			1,042	1,122	1,191	1,264	1,383	1,607	15	16	18	19	20	22	25	1.27	0	2,155	2075	
	955100	Talofofo	3	667			719	774	822	872	954	1,108	0	0	0	0	0	0	0	1.27	0	6,958	7435	
	955100	Talofofo	4	706		-	761	819	870	923	1,010	1,173	91	98	105	112	119	130	151	1.27	0	2,536	2073	_
	955100	Talofofo	5	30		-	32	35	37	39	43	50	0	0	0	0	0	0	0	1.27	0	58,140	80390	_
	955200 955200	Inarajan	1	487		-	525 2.024	565 2 181	600 2 315	637 2.457	697 2,688	809	0	0 24	0	0 27	0	0 31	0 37	1.27	0	13,616	14992 91217	_
	955200 955200	Inarajan Inarajan	2	1,879 467			2,024 503	2,181 542	2,315 575	2,457 611	2,688 668	3,122 776	22 11	12	26 13	13	29 14	15		1.27	90 0	86,334 6,349	91217 6473	+
i	955200	Inarajan	4	219			236	254	270	286	313	364	128	138	149	158	168	183	213	1.27	0	7,768	7926	+
	955300	Merizo	1	1,155			1,244	1,340	1,423	1,510	1,652	1,919	5	6	6	6	7	7	9	1.27	0	27,925	28865	+
	955300	Merizo	2	1,008			1,086	1,170	1,242	1,318	1,442	1,675	44	47	51	54	57	63	73	1.27	0	10,542	12154	1
	955400	Umatac	1	323			348	375	398	422	462	537	0	0	0	0	0	0	0	1.27	0	32,905	36300	
	955400	Umatac	2	564			608	655	695	737	807	937	21	23	24	26	27	30	35	1.27	0	5,356	5266	
	955600	Barrigada	1	361			389	419	445	472	516	600	24	26	28	29	31	34	40	1.27	0	587	898	
	955600	Barrigada	2	650			650	650	650	650	650	650	166	179	193	205	217	237	276	1.27	0	466	1606	-
9	955600	Barrigada	3	438			472	508	540	573	627	728	0	0	0	0	0	0	0	1.27	0	1,058	646	

Vol I Chapter 6 Population & Land Use Forecast



Exhibit 6C – Population and Land Use Projection Correspondence

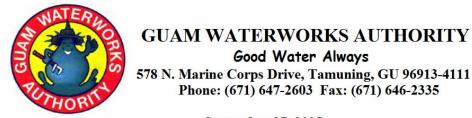
MEMORANDUM

TO: Commander, U.S. Air Force

FROM: General Manager, Guam Waterworks Authority

SUBJECT: Guam Waterworks Authority Water Resources Master Plan – Population and Land Use Projection Report

Gentlemen:


We appreciate your review and comments provided on the subject report. Stated below in italics is our response to your input on the subject report. Note that our consultants have incorporated your comments where appropriate.

Statement changes have been requested concerning Air Force activities on pages 9, 19, and 21. The changes have been made as requested. The Department of Land Management provided Figures 1 and 2 presented in the report. They were prepared in the mid to late 1980's and are the best available zoning and land use maps.

We look forward to working with you as we progress in preparing a Water Resources Master Plan that addresses water demand and wastewater treatment needs for Guam as outlined in the stipulated order from the U.S. Environmental Agency. Note that the subject report satisfies only one component of the much larger and complex Water Resources Master Plan.

David Craddick.

Exhibit 6C – Population and Land Use Projection Correspondence (continued)

September 27, 2005

MEMORANDUM

TO:	Director, Bureau of Statistics & Planning
FROM:	General Manager, Guam Waterworks Authority
SUBJECT:	Guam Waterworks Authority Water Resources Master Plan (WRMP) – Population and Land Use Projection Report
Gentlemen:	

We appreciate your review and comments provided on the subject report. Stated below in italics is our response to your input on the subject report. Note that our consultants have incorporated your comments where appropriate.

The carrying capacity of Guam's water supply is evaluated and discussed in the WRMP's Water Budget Report. Population projection scenarios were provided in the initial population projection report. The limiting factors for population block group is based on the average number of people per unit and the number of units within block groups which can be accommodated within existing zoning regulations.

The projections on military lands were prepared similarly to those on other areas. The employment projections assume a constant proportion of the population participating in the labor force with some adjustments in the geographic distribution areas consistent with development trends. Full header titles are included as footnotes in the report. A breakout of the Department of Defense block groups is provided in the report. There is merit regarding the comments on the limitations of long-term projection periods. Projections for the various time periods included were required to anticipate a visionary view of the future. While longer term projections are necessarily more speculative, they may be insightful for long term capital infrastructure scenarios. Tourists are included in the hotel population.

We look forward to working with you as we progress in preparing a Water Resources Master Plan that addresses water demand and wastewater treatment needs for Guam as outlined in the stipulated order from the U.S. Environmental Agency. Note that the subject report satisfies only one component of the much larger and complex Water Resources Master Plan.

David Craddick.

NATERING BUTHORITI

Exhibit 6C – Population and Land Use Projection Correspondence (continued)

GUAM WATERWORKS AUTHORITY Good Water Always 578 N. Marine Corps Drive, Tamuning, GU 96913-4111 Phone: (671) 647-2603 Fax: (671) 646-2335

September 27, 2005

MEMORANDUM

TO:	Director, Guam Economic Development & Commerce Authority
FROM:	General Manager, Guam Waterworks Authority
SUBJECT:	Guam Waterworks Authority Water Resources Master Plan (WRMP) Population and Land Use Projection Report

Gentlemen:

We appreciate your review and comments provided on the subject report. Stated below in italics is our response to your input on the subject report. Note that our consultants have incorporated your comments where appropriate.

On General Comments:

We have contacted the agency responsible for the Highway Master Plan Update and they indicated that the plan update remains in draft form and is not yet available. The previous Highway Master Plan projections were not utilized due to outdated data and the fact that it was released prior to the availability of 2000 census data. A breakout of the Department of Defense block groups is provided in the report. The carrying capacity of Guam's water supply is evaluated and discussed in the WRMP's Water Budget Report.

On Specific Comments

Changes recommended for specific line items have been incorporated where necessary.

We look forward to working with you as we progress in preparing a Water Resources Master Plan that addresses water demand and wastewater treatment needs for Guam as outlined in the stipulated order from the U.S. Environmental Agency. Note that the subject report satisfies only one component of the much larger and complex Water Resources Master Plan.

allalad

David Craddick.

Exhibit 6C – Population and Land Use Projection Correspondence (continued)

GUAM WATERWORKS AUTHORITY Good Water Always 578 N. Marine Corps Drive, Tamuning, GU 96913-4111 Phone: (671) 647-2603 Fax: (671) 646-2335

September 27, 2005

MEMORANDUM

- TO: Director, Guam International Airport Authority
- FROM: General Manager, Guam Waterworks Authority
- SUBJECT: Guam Waterworks Authority Water Resources Master Plan Population and Land Use Projection Report

Gentlemen:

We appreciate your review and comments provided on the subject report. Stated below in italics is our response to your input on the subject report. Note that our consultants have incorporated your comments where appropriate.

Comments shared have been noted and corrected as appropriate in the report. Development activities suitable for the airport proper are likely to occur regardless of ownership, based on highest and best use.

We look forward to working with you as we progress in preparing a Water Resources Master Plan that addresses water demand and wastewater treatment needs for Guam as outlined in the stipulated order from the U.S. Environmental Agency. Note that the subject report satisfies only one component of the much larger and complex Water Resources Master Plan.

) al Plul

David Craddick.

NATERWOR BUTHORITI

Exhibit 6C – Population and Land Use Projection Correspondence (continued)

GUAM WATERWORKS AUTHORITY Good Water Always 578 N. Marine Corps Drive, Tamuning, GU 96913-4111 Phone: (671) 647-2603 Fax: (671) 646-2335

January 16, 2006

MEMORANDUM

TO: Admiral, U.S. Navy

FROM: General Manager, Guam Waterworks Authority

SUBJECT: Guam Waterworks Authority Water Resources Master Plan – Population and Land Use Projection Report

Gentlemen:

In finalizing our report on Population and Land Use Projection, stated below in italics is our response to your input on the subject report. Our consultants have incorporated your comments where appropriate.

The personnel loading data projected for 2010 will be incorporated into the water hydraulics model once actual location of housing facilities is determined. The inability of future civilian development projects to access military water sources could constrain development in the short term. However, in the longer term, alternative water sources and distribution could be developed.

Your comments are greatly appreciated. We look forward to working with you as we continue to address the stipulated order from the U.S. Environmental Agency to prepare a Water Resources Master Plan that addresses water demand and wastewater treatment for Guam. Note that the subject report satisfies only one component of the much larger and complex Water Resources Master Plan.

1 P. Lul

David Craddick, General Manager.